"The successive layers, each having its own proper wall, are often superposed one upon another without the intervention of any supplemental or intermediate skeleton such as presents itself in all the more massive forms of the Nummuline series; but a deposit of this form of shell-substance, readily distinguishable by its homogeneousness from the finely tubular shell immediately investing the segments of the sarcode-body, is the source of the great thickening which the calcareous zones often present in vertical sections of Eozoon. The presence of this intermediate skeleton has been correctly indicated by Dr. Dawson; but he does not seem to have clearly differentiated it from the proper wall of the chambers. All the tubuli which he has described belong to that canal system which, as I have shown,[T] is limited in its distribution to the intermediate skeleton, and is expressly designed to supply a channel for its nutrition and augmentation. Of this canal system, which presents most remarkable varieties in dimensions and distribution, we learn more from the casts presented by decalcified specimens, than from sections, which only exhibit such parts of it as their plane may happen to traverse. Illustrations from both sources, giving a more complete representation of it than Dr. Dawson’s figures afford, have been prepared from the additional specimens placed in my hands.
[T] Op. cit., [pp. 50, 51].
"It does not appear to me that the canal system takes its origin directly from the cavity of the chambers. On the contrary, I believe that, as in Calcarina (which Dr. Dawson has correctly referred to as presenting the nearest parallel to it among recent Foraminifera), they originate in lacunar spaces on the outside of the proper walls of the chambers, into which the tubuli of those walls open externally; and that the extensions of the sarcode-body which occupied them were formed by the coalescence of the pseudopodia issuing from those tubuli.[U]
"It seems to me worthy of special notice, that the canal system, wherever displayed in transparent sections, is distinguished by a yellowish brown coloration, so exactly resembling that which I have observed in the canal system of recent Foraminifera (as Polystomella and Calcarina) in which there were remains of the sarcode-body, that I cannot but believe the infiltrating mineral to have been dyed by the remains of sarcode still existing in the canals of Eozoon at the time of its consolidation. If this be the case, the preservation of this colour seems to indicate that no considerable metamorphic action has been exerted upon the rock in which this fossil occurs. And I should draw the same inference from the fact that the organic structure of the shell is in many instances even more completely preserved than it usually is in the Nummulites and other Foraminifera of the Nummulitic limestone of the early Tertiaries.
"To sum up,—That the Eozoon finds its proper place in the Foraminiferal series, I conceive to be conclusively proved by its accordance with the great types of that series, in all the essential characters of organization;—namely, the structure of the shell forming the proper wall of the chambers, in which it agrees precisely with Nummulina and its allies; the presence of an intermediate skeleton and an elaborate canal system, the disposition of which reminds us most of Calcarina; a mode of communication of the chambers when they are most completely separated, which has its exact parallel in Cycloclypeus; and an ordinary want of completeness of separation between the chambers, corresponding with that which is characteristic of Carpenteria.
"There is no other group of the animal kingdom to which Eozoon presents the slightest structural resemblance; and to the suggestion that it may have been of kin to Nullipore, I can offer the most distinct negative reply, having many years ago carefully studied the structure of that stony Alga, with which that of Eozoon has nothing whatever in common.
"The objections which not unnaturally occur to those familiar with only the ordinary forms of Foraminifera, as to the admission of Eozoon into the series, do not appear to me of any force. These have reference in the first place to the great size of the organism; and in the second, to its exceptional mode of growth.
"1. It must be borne in mind that all the Foraminifera normally increase by the continuous gemmation of new segments from those previously formed; and that we have, in the existing types, the greatest diversities in the extent to which this gemmation may proceed. Thus in the Globigerinæ, whose shells cover to an unknown thickness the sea bottom of all that portion of the Atlantic Ocean which is traversed by the Gulf Stream, only eight or ten segments are ordinarily produced by continuous gemmation; and if new segments are developed from the last of these, they detach themselves so as to lay the foundation of independent Globigerinæ. On the other hand in Cycloclypeus, which is a discoidal structure attaining two and a quarter inches in diameter, the number of segments formed by continuous gemmation must be many thousand. Again, the Receptaculites of the Canadian Silurian rocks, shown by Mr. Salter’s drawings[V] to be a gigantic Orbitolite, attains a diameter of twelve inches; and if this were to increase by vertical as well as by horizontal gemmation (after the manner of Tinoporus or Orbitoides) so that one discoidal layer would be piled on another, it would form a mass equalling Eozoon in its ordinary dimensions. To say, therefore, that Eozoon cannot belong to the Foraminifera on account of its gigantic size, is much as if a botanist who had only studied plants and shrubs were to refuse to admit a tree into the same category. The very same continuous gemmation which has produced an Eozoon would produce an equal mass of independent Globigerinæ, if after eight or ten repetitions of the process, the new segments were to detach themselves.