Goes on everywhere with one great exception. There is one great artery, with its branches, in which blood is not bright, scarlet, arterial, but dark, purple, venous. There are certain great veins in which the blood is not dark, purple, venous, but bright, scarlet, arterial. You know which they are. The pulmonary artery and the pulmonary veins. The blood in the pulmonary veins contains more oxygen and less carbonic acid than the blood in the pulmonary artery. It has lost carbonic acid and gained oxygen, as it passed through the capillaries of the lungs.

[38.] What are the lungs? As you saw them in the rabbit, or as you may see them in the sheep, they are shrunk and collapsed. We shall presently learn why. But if you blow into them through the windpipe, which divides into branches, one for either lung, you can blow them out ever so much bigger. They are in reality bladders which can be filled with air, but which, left to themselves, at once empty themselves again.

They are bladders of a peculiar construction. Imagine a thick short bush or tree crowded with leaves; imagine the trunk and the branches, small and great, down to the veriest twigs, all hollow; imagine further that the leaves themselves were little hollow bladders, stuck on to the smallest hollow twigs, and made of some delicate, but strong and exceedingly elastic, substance. If you blew down the trunk you might stretch and swell out all the hollow leaves; when you left off blowing they would all fall together, and shrink up again.

Around such a framework of hollow branches called bronchial-tubes, and hollow elastic bladders called air-cells, is wrapped the intricate network of pulmonary arteries, veins, and capillaries, in such a way that each air-cell, each little bladder, is covered by the finest and most close-set network of capillaries, very much as a child’s india-rubber ball is covered round with a network of string. Very thin are the walls of the air-cell, so thin that the blood in the capillary is separated from the air in the air-cell by the thinnest possible sheet of finest membrane. As the dark purple blood rushes through the crowded network, its carbonic acid escapes through this thin membrane, from the blood into the air, and oxygen slips from the air into the blood.

Thus the dark purple venous blood coming along the pulmonary artery, as it glides in the pulmonary capillaries along the outside of the inflated air-cells, by loss of carbonic acid and gain of oxygen is changed into the bright scarlet blood of the pulmonary veins.

This then is the mystery of our constant need of air. The flesh of the body of whatever kind, everywhere all over the body, breathes blood, making pure arterial blood venous and impure, all over the body except in the lungs, where the blood itself breathes air, and changes from impure and venous to pure and arterial.

[39.] Through the capillaries of the muscle a stream of blood is ever flowing so long as life lasts and the heart has power to beat; every instant a fresh supply of bright, pure, arterial blood comes to take the place of that which has become dark, venous, and impure. Without this constant renewal of its blood the muscle would be choked, and its vital flame would flicker and die out.

In the lungs, the air filling the air-cells would if left to itself soon lose all its oxygen and become loaded with carbonic acid; and the blood in the capillaries of the lungs would no longer be changed from venous to arterial, but would travel on to the pulmonary vein as dark and impure as in the pulmonary artery. Just as the blood in the muscle must be constantly renewed, so must the air in the lungs be continually changed.

How is this renewal of the air in the lungs brought about?

In the dead rabbit you saw the lungs, shrunk, collapsed, emptied of much of their air, and lying almost hidden at the back of the chest ([Fig. 1], G.G.) The cavity of the chest seemed to be a great empty space, hardly half filled by the lungs and heart. But this is quite an unnatural condition of the lungs. Take another rabbit, and before you touch the chest at all, open the abdomen and remove all its contents—stomach, liver, intestines, &c. You will then get a capital view of the diaphragm, which as you already know forms a complete partition between the chest and the belly. You will notice that it is arched up towards the chest, so that the under surface at which you are looking is quite hollow. If you hold the rabbit up by its hind legs with its head hanging down, and pour some water into the abdomen, quite a little pool will gather in the shallow cup of the diaphragm.