In the rabbit the diaphragm is very transparent; you can see right through it into the chest, and you will have no difficulty in recognizing the pink lungs shining through it. You will notice that they cover almost all the diaphragm—in fact they fill up the whole of the cavity of the chest that is not occupied by the heart.

If you seize the diaphragm carefully in the middle with a pair of forceps, and pull it down towards the abdomen, you will find that you cannot create a space between the lungs and the diaphragm, but that the lungs follow the diaphragm, and are quite as close to it when it is pulled down as when it is drawn up.

In other words, when the diaphragm is arched up as you find it on opening the abdomen, the lungs quite fill the chest; and when the diaphragm is drawn down and the cavity of the chest made bigger, the lungs swell out so that they still fill up the chest.

[40.] How do they swell out? By drawing air in through the windpipe. If you listen, you will perhaps hear the air rush in as you pull the diaphragm down—and if you tie the windpipe, or quite close up the nose and mouth, you will find it much harder to pull down the diaphragm, because no fresh air can get into the lungs.

Now prick a hole through the diaphragm into the cavity of the chest, without wounding the lungs. You will hear a sudden rush of air, and the lungs will shrink up almost out of sight. They are no longer close against the diaphragm as they were before; and if you open the chest you will find that they have shrunk to the back of the thorax as you saw them in the first rabbit. The rush of air is partly a rush of air out of the lungs, and partly a rush of air into the chest between the chest walls and the outside of the lungs.

But before you lay open the chest, pull the diaphragm up and down as you did before you made the hole in the diaphragm. You will find that you have no effect whatever on the lungs. They remain perfectly quiet, and do not swell up at all. By working the diaphragm up and down, you only drive air through the hole you have made, in and out of the cavity of the chest, not in and out of the lungs as you did before.

We see then that the chest is an air-tight chamber, and that the lungs, when the chest walls are whole, are always on the stretch, are on the stretch even when the diaphragm is arched up as high as it can go.

Why is it that the lungs are thus always on the stretch? Because the chest is air-tight, so that no air can get in between the outside of the lungs and the inside of the chest wall. You know from your Physics Primer (Art. 29, p. 34) that the atmosphere is always pressing on everything. It is pressing on all parts of the rabbit; it presses on the inside of the windpipe and on the inside of the lungs. It presses on the outside of the abdomen, and so presses on the under surface of the diaphragm, and drives it up into the chest as far as it will go. But it will not go very far, because its edges are fastened to the firm walls of the chest. The air also presses on the outside of the chest, but cannot squeeze that much, because its walls are stout.

If the walls of the chest were soft and flabby, the atmosphere would squeeze them right up, and so through them press on the outside of the lungs; since they are firm it cannot. The chest walls keep the pressure of the atmosphere off the outside of the lungs.

The lungs then are pressed by the atmosphere on their insides and not on their outsides; and it is this inside pressure which keeps them on the stretch or expanded. When you blow into a bladder, you put it on the stretch and expand it because the pressure of your breath inside the bladder is greater than the pressure of the atmosphere outside the bladder. If, instead of making the pressure inside greater than that outside, you were to make the pressure outside less than that inside, as by putting the bladder under an air-pump, you would get just the same effect; you would expand the bladder. That is just what the chest walls do; they keep the pressure outside the lungs less than that inside the lungs, and that is why the lungs, as long as the chest walls are sound, are always expanded and on the stretch.