Other volcanoes behave quite differently from these violent volcanoes, and do hardly any noteworthy damage. Among these is the crater-island of Stromboli, situated between Sicily and Calabria. This volcano has been in continuous activity for thousands of years. Its eruptions succeed one another at intervals ranging from one minute to twenty minutes, and its fire serves the sailors as a natural light-house. The force of this volcano is, of course, unequal at different periods. In the summer of 1906 it is said to have been in unusually violent activity. Very quiet, as a rule, are the eruptions of the great volcanoes on Hawaii.

Foremost among the substances which are ejected from volcanoes is water vapor. The cloud floating above the crater is, for this reason, the surest criterion of the activity of the volcano. Violent eruptions drive the masses of steam up into the air to heights of 8 km. (5 miles), as the illustrations (Figs. 1 to 4) will show.

The height of the cloud may be judged from the height of Vesuvius, 1300 metres (nearly 4300 ft.) above sea-level. The illustration on page 4 ([Fig. 2]) is a reproduction of a drawing by Poulett Scrope, representing the Vesuvius eruption of the year 1822. There seems to have been no wind on this day; the masses of steam formed a cloud of a regular shape which reminds us of a pine-tree. According to the description of Plinius, the cloud noticed at the eruption of Vesuvius in the year 79 must have been of the same kind. When the air is not so calm the cloud assumes a more irregular shape (Fig. 3). Clouds which rise to such elevations as we have spoken of are distinguished by strong electric charges. The vivid flashes of lightning which shoot out of the black clouds add to the terror of the awful spectacle.

Fig. 2.—Eruption of Vesuvius in 1882. (After a contemporaneous drawing by Poulett Scrope)

The rain which pours down from this cloud is often mixed with ashes and is as black as ink. The ashes have a color which varies between light-gray, yellow-gray, brown, and almost black, and they consist of minute spherules of lava ejected by the force of the gases and rapidly congealed by contact with the air. Larger drops of lava harden to volcanic sand—the so-called "lapilli" (that is, little stones), or to "bombs," which are often furrowed by the resistance offered by the air, and turn pear-shaped. These solid products, as a rule, cause the greatest damage due to volcanic eruptions. In the year 1906 the weight of these falling masses (Fig. 4) crushed in the roofs of houses. A layer of ashes 7 m. (23 ft.) in thickness buried Pompeii under a protective crust which had covered it up to days of modern excavations. The fine ashes and the muddy rain clung like a mould of plaster to the dead bodies. The mud hardened afterwards into a kind of cement, and as the decomposition products of the dead bodies were washed away, the moulds have provided us with faithful casts of the objects that had once been embedded in them. When the ashes fall into the sea, a layer of volcanic tuffa is formed in a similar manner, which enshrines the animals of the sea and algæ. Of this kind is the soil of the Campagna Felice, near Naples. Larger lumps of solid stones with innumerable bubbles of gases float as pumice-stone on the sea, and are gradually ground down into volcanic sand by the action of the waves. The floating pumice-stone has sometimes become dangerous or, at any rate, an obstacle to shipping, through its large masses; that was, at least, the case with the Krakatoa eruption of 1883.

Fig. 3.—Eruption of Vesuvius in 1872. (After a photograph.)

Among the gases which are ejected in addition to water vapor, carbonic acid should be mentioned in the first instance; also vapors of sulphur and sulphuretted hydrogen, hydrochloric acid, and chloride of ammonium, as well as the chlorides of iron and copper, boric acid, and other substances. A large portion of these bodies is precipitated on the edges of the volcano, owing to the sudden cooling of the gases. The more volatile constituents, such as carbonic acid, sulphuretted hydrogen, and hydrochloric acid, may spread over large areas, and destroy all living beings by their heat and poison. It was these gases, for example, which caused the awful devastation at St. Pierre, where 30,000 human lives were destroyed on May 8, 1902, by the eruption of Mont Pelée. The ejection of hydrogen gas, which, on emerging from the lava, is burned to water by the oxygen of the air, has been observed in the crater of Kilauea.

The ashes of the volcanoes are sometimes carried to vast distances by the air currents—e.g., from the western coast of South America to the Antilles; from Iceland to Norway and Sweden; from Vesuvius (1906) to Holstein. Best known in this respect is the eruption of the Krakatoa, which drove the fine ashes up to an elevation of 30 km. (18 miles). The finest particles of these ashes were slowly carried by the winds to all parts of the earth, where they caused, during the following two years, the magnificent sunrises and sunsets which were spoken of as "the red glows." This glow was also observed in Europe after the eruption of Mont Pelée. The dust of Krakatoa further supplied the material for the so-called "luminous clouds of the night," which were seen in the years 1883 to 1892 floating at an elevation of about 80 km. (50 miles), and hence illuminated by the light of the sun long after sunset.