The crater of Kilauea, on the high volcano of Mauna Loa, in Hawaii—this volcano is about of the same height as Mont Blanc—has excited special interest. The crater forms a large lake of lava having an area of about 12 sq. km. (nearly 5 sq. miles), which, however, varies considerably with time. The lava boiling at red glow is constantly emitting masses of gas under slight explosions, spurting out fiery fountains to a height of 20 m. (65 ft.) into the air. Here and there lava flows out from crevices in the wall of the crater down the slope of the mountain, until the surface of the lake of lava has descended below these cracks. As a rule, this lava is of a thin fluid consistency, and it spreads, therefore, rather uniformly over large areas. Of a similar kind are also the floods of lava which are sometimes poured over thousands of square kilometres on Iceland. The so-called Laki eruption of the year 1783 was of a specially grand nature. Though occurring in an uninhabited district, it did a great amount of damage. In the more ancient geological periods, especially in the Tertiary age, similar sheets of lava of vast extensions have been spread over England and Scotland (more than 100,000 sq. km., roughly, 40,000 sq. miles); over Deccan, in India, 400,000 sq. kms. (150,000 sq. miles), up to heights of 2000 m. (6500 ft.); and over Wyoming, Yellowstone Park, Nevada, Utah, Oregon, and other districts of the United States, as well as over British Columbia.
Fig. 4.—Photograph of Vesuvius, 1906. Chiefly clouds of ashes
In other cases the slowly ejected lava is charged with large volumes of gases, which escape when the lava congeals and burst it up into rough, unequal blocks, forming the so-called block lava (Fig. 5). The streams of lava can likewise produce terrible devastation when they descend into inhabited districts; on account of their slow motion, they rarely cause loss of life, however.
Where the volcanic activity gradually lessens or ceases, we can still trace it by the exhalations of gas and the springs of warm water which we find in many districts where, during the Tertiary age, powerful volcanoes were ejecting their streams of lava. To this class belong the famous geysers of Iceland, of Yellowstone Park (Fig. 6), and of New Zealand; also the hot springs of Bohemia, so highly valued therapeutically (e.g., the Karlsbad Sprudel); the Fumaroli of Italy, Greece, and other countries, exhaling water vapor; the Mofettæ, with their exhalations of carbonic acid (of frequent occurrence in the district of the Eifel and on both sides of the middle Rhine, in the Dogs Grotto near Naples, and in the Valley of Death in Java); the Solfatara, exhaling vapors of sulphur—sulphuretted hydrogen and sulphur dioxide (they are found near Naples on the Phlegræan Fields and in Greece); as well as many of the so-called mud volcanoes, which eject mud, salt water, and gases (as a rule, carbonic acid and hydrocarbons)—for example, the mud volcanoes near Parma and Modena, in Italy, and those near Kronstadt, in Transylvania.
Fig. 5.—Block lava on Mauna Loa
The extinct volcanoes, of which some, like the Aconcagua, 6970 m. (22,870 ft.), in South America, and the Kilimanjaro, in Africa, 6010 m. (19,750 ft.), rank among the highest mountains, are exposed to a rapid destruction by the rain, because they consist largely of loose materials—volcanic ashes with interposed layers of lava. Where these lava streams expand gradually, they protect the ground underneath from erosion by water, and in this way proper cuts are formed on the edges of the lava streams, passing through the old volcano and through the sedimentary strata at deeper levels.
Fig. 6.—The Excelsior Geyser in Yellowstone Park, U. S. A. Remnant of powerful volcanic activity in the Tertiary age