CHAPTER IX
Stereo-Isomerism: Stereo-Chemistry

The first gropings in the search for light on the inner structure of molecular groupings may be said to date from Biot’s work on polarisation. In 1815 Biot, a pupil of Malus, made the remarkable discovery that a number of naturally occurring organic compounds—e.g., sugar, tartaric acid, oil of turpentine, camphor, etc., are optically active—that is, rotate the plane of polarisation in one direction or the other. The property had previously been observed in quartz, and was assumed to be connected with the crystalline character of that substance. Biot, however, pointed out that the case of oil of turpentine which is a liquid, and the cases of the other substances when in solution, showed that crystalline character had no necessary connection with the phenomenon, but that it must be dependent upon the internal or molecular arrangement of the optically active substance.

In 1844 Mitscherlich, who first demonstrated the relation between atomic constitution and crystalline form, drew attention to the fact that the salts of the isomeric modifications of tartaric acid, studied by Berzelius, although possessing the same chemical composition, the same crystalline form, with the same angles, the same double refraction, and therefore the same angles between their optical axes, nevertheless behave quite differently as regards their optical activity, solutions of the tartrates rotating the plane of polarisation, whereas those of the racemates are inactive. In 1848 this remarkable circumstance engaged the attention of Louis Pasteur, a young man who had just completed his course at the École Normale in Paris, and was acting as assistant to Balard, the discoverer of the element bromine. Pasteur, on examining the crystals of the two forms of tartaric acid, and of some of their salts, detected the presence, on some of them, of certain facets—so-called hemihedral faces—which had hitherto been unrecognised, but were similar to facets which Haüy had observed on quartz. Haüy had, in fact, divided quartz crystals into two classes—right-handed and left-handed, depending upon the side on which these facets occurred. The forms were, as it is termed, enantiomorphous. Biot, moreover, found that some quartz crystals, cut parallel to the axis, turned the plane of polarisation to the right, whereas others turned it to the left; and Herschel suggested that the phenomena were probably connected, and such was found to be the case.

Mindful of Herschel’s observation, Pasteur found that the crystals of certain of the optically active tartrates showed hemihedral faces, whereas those of the corresponding racemates showed no trace of them. On recrystallising the racemates, however, it was noticed that two sets of crystals were formed—enantiomorphic forms—the first set of crystals having hemihedral forms on the right-hand side, and the second set on the left-hand side. The forms, in fact, were so related that one appeared, as if it were the image, as seen in a mirror, of the other. When solutions of these crystals were examined, one set was found to rotate to the right, the other to an equal degree to the left. The dextro-rotatory salt yielded ordinary tartaric acid; the corresponding lævo-rotatory acid was a hitherto unknown modification: the two together, in equal proportions, constituted racemic acid.

In 1863 Wislicenus published a remarkable memoir on the synthesis of lactic acid. The acid in sour milk was discovered by Scheele in 1780. In 1807 Berzelius discovered a similar acid, called sarcolactic acid, in muscle juice; this was erroneously pronounced by Liebig to be identical with that of sour milk. Other forms of lactic acid were made known, the structural character of which was not to be explained by current hypotheses. Wislicenus concluded that their differences could be due only to different arrangements of their atoms in space.

In 1874 the conception of atomic grouping received a remarkable development by the publication of two memoirs—one by Van ’t Hoff, and the other by Le Bel—which served to connect molecular structure with optical activity. Confining their attention to carbon compounds, they inferred that all optically active substances contained at least one multivalent atom, united to other atoms or groups, so as to form in space an unsymmetrical arrangement. Van ’t Hoff regarded the carbon atom as occupying the centre of a tetrahedron, to the summits of which its valencies were directed. If different groupings are attached to these summits, the structure is asymmetrical, and is optically active. The two forms of lactic acid, for example, may be represented by the following space formulæ:

It will be seen from an inspection of the figures that the one is the image-form of the other, and, no matter how they are turned, they are not superposable; they are right- and left-handed, or, as it is termed, enantiomorphs.

There is no fundamental distinction between the hypothesis of Van ’t Hoff and Le Bel as to the effect of asymmetry on optical behaviour. Le Bel regards the effect of asymmetry simply as a necessary consequence of the presence of four dissimilar groupings, and as independent of valency and the geometrical form of the molecule.