Jacobus Henricus Van ’t Hoff.

It was surmised by Pasteur that every liquid or solid in solution showing optical activity, if crystallisable, would be found to manifest hemihedral faces; but this has not been generally established. Further, it does not always happen that an optically active substance in solution is so when solid. Lastly, optical activity may be latent even in asymmetric carbon compounds if dextro- or lævo-modifications are present in equal proportions, as in racemic acid. Such compounds are, in fact, termed “racemic,” or racemoids; and they may be separated occasionally by crystallisation, as in Pasteur’s method with the tartrates; or as shown by him by the action of the racemoid upon another optically active substance; or, lastly, by taking advantage of the specific action (specific assimilation) of organisms—Pasteur’s so-called biochemical method.

It is a physiological fact of great interest that the behaviour of enantiomorphs towards the animal organism is frequently markedly different. Lævo-tartaric acid administered to guinea-pigs is found to be twice as poisonous as the dextro-acid; dextro-asparagine possesses a sweet taste, but lævo-asparagine is tasteless; lævo-nicotine is more poisonous than the dextro-alkaloid.

The ferments known as enzymes are also found to possess the power of selection, behaving differently towards the different optically active modifications of the same substance. It is frequently observed that an optically active substance may be rendered inactive by the conversion of half the substance into its enantiomorph. This operation was first performed by Pasteur, and may be brought about by heating the substance, either alone or with water, under pressure. Indeed, it is occasionally observed to take place at the ordinary temperature (autoracemisation).

By the action of various reagents the derivatives of an optically active substance are found not unfrequently to change the direction of their optical activity. Indeed, by such means one enantiomorph may be changed into another. Thus lævo-menthol may be converted into the dextro-modification by treatment with sulphuric acid.

The rotatory power of a substance is frequently modified by the character of its solvent, and varies with the temperature and concentration of the solution. Landolt and Oudemans found that the specific rotation of dilute solutions of tartrates and of salts of the active alkaloids was independent of the nature of the base and acid respectively present—a fact which finds its explanation in the theory of electrolytic dissociation. It has been known for some years past that the specific rotation of solutions of certain sugars changes with time, being sometimes less and sometimes more than the initial amount. This phenomenon is now known as multirotation, or mutarotation. It seems to be connected with an alteration in the configuration of the molecules.

There is a special case of stereo-isomerism, differing from that of optical isomerism and of structural isomerism (with which we have hitherto been alone concerned), which was predicted by Van ’t Hoff in his remarkable work La Chimie dans l’Espace, published in 1877—noteworthy as being the first serious attempt to grapple with the problem of spatial molecular grouping, foreshadowed by Wollaston, Berzelius, and, indeed, all the early philosophic thinkers who accepted the atomic theory. The special form of stereo-isomerism now referred to, which has been more particularly investigated by Wislicenus, is distinguished as geometrical isomerism; not, perhaps, a sufficiently descriptive term, since, comprehensively, all forms of isomerism are really cases of geometrical isomerism. Instances of it are to be met with among the isomeric acids existing as glycerides in certain fats, in cinnamic acid, in stilbene and its derivatives, etc. It was first observed in maleic and fumaric acids—isomeric acids of the empirical formula C2H2 (COOH)2, obtained by the distillation of malic acid, the characteristic acid met with in the apple and other fruits and in certain other vegetal products. These acids may be represented by the following space formulæ:

Maleic acid.

Fumaric acid.