Sodium salt of phenylglycin.
Sodamide.
Indoxyl.
Indigo blue.
Phenylglycin is obtained by the action of monochloracetic acid on aniline, which in its turn is obtained through nitrobenzene from benzene. Since benzene can be synthetically prepared by the condensation of acetylene, which can be obtained by the direct union of carbon and hydrogen at a high temperature, it is theoretically possible to build up indigo blue from inorganic materials.
Synthetical indigo blue was placed on the market in 1897 with an almost immediate effect on the production and price of the natural variety, and to-day the output of Bengal indigo has fallen by more than fifty per cent. In 1902 the amount of the natural product was probably not greater than three million kilos, whereas in the same year the production of synthetic indigo was upwards of five million kilos. Before the introduction of the artificial variety the price of pure indigo blue ranged from sixteen to twenty shillings per kilo; by the end of 1905 it had fallen to seven or eight shillings. Mention should be made also of thio-indigo red and the thionaphthene derivatives, some of which promise to be important colouring matters. In recent years the so-called sulphur colouring matters have acquired considerable importance. Space will not permit of any fuller treatment of the development of the manufacture of the artificial organic colouring matters. This industry had its beginnings in England, but it is now mainly carried on in Germany. Its importance may be gleaned from the fact that the value of the production at the present time amounts to not less than £12,500,000 per annum, two thirds of the output being exported. It demands the services of battalions of skilled chemists, and gives employment to many thousands of artisans.
Some of the most notable achievements of modern synthetical chemistry are to be found in the work of Emil Fischer on the sugars and the proteins. Although the sugars have from the earliest times been reckoned among the most characteristic products of plant life, and have long been used as food and as sources of alcohol, comparatively little was known until lately of their real nature and mutual relations, in spite of numerous attempts to elucidate their constitution. Much of the mystery surrounding their chemical history has now been dispelled. Not only has the molecular structure of the more important naturally occurring sugars been unravelled, but a large number of hitherto unknown members of the various groups of the great family to which they belong have been prepared. The first insight into the constitution of these bodies may be said to date from the researches of Kiliani, made about a quarter of a century ago. In 1887 Fischer effected the synthesis of a form of fructose (fruit sugar), and immediately afterwards of ordinary dextro-glucose (grape sugar) and its enantiomorph lævo-glucose, and the two optically active forms of natural fruit sugar. Since that time such sugars as arabinose, xylose, fucose, mannose, sorbose, cane-sugar, maltose, lactose, etc., and the sugars existing as glucosides, have been examined, their stereo-chemical relations defined, and synthetic methods of production devised. Incidentally, their behaviour towards enzymes has been studied, and the remarkable selective action of these ferments on the various groups, due apparently to differences of configuration, has been established, with the result that much light has been thrown on the mechanism of enzyme action and on the general theory of fermentation.