Emil Fischer.

The study of the proteins by Fischer constitutes a new chapter in bio-chemistry. Although long recognised as among the most important of vital products, from the circumstance that they enter into the composition of animal tissues and secretions and are essential constituents of protoplasm, the proteins are among the worst defined substances known to the chemist. They are difficult to separate, as they closely resemble one another, and afford no certain indications of individuality. Very few of them have been obtained in a form in which their identity could be established. Oxyhæmoglobin was isolated some years ago, but the proteins of serum albumin and of egg albumin have only recently been obtained in definite crystalline shape. All the proteins—even the simplest of them—are of great complexity, and possess apparently very high molecular weights. Hæmoglobin, for example, appears to have approximately the formula C158H123N195O218FeS3, with a minimum molecular weight of 16,600. Indeed, there is experimental evidence to show that it is even considerably higher than this.

The main clues to the nature of these substances have been gained by the systematic study of their hydrolysis, induced by reagents, or by the action of enzymes, whereby they are found to break down into proteoses, peptones, and a great variety of amino acids, some of which have been synthesised. Among the proteins of simplest constitution are the protamines, found in the spermatozoa of fish. They are basic substances, especially rich in nitrogen, forming salts with platinum chloride and certain metallic oxides. The best investigated member of the group is salmine, obtained from the testicle of the salmon. The products of its hydrolysis have been fairly well ascertained, and their quantitative relation is such that the substance must have at least a molecular weight of 2045, corresponding to the formula C81H155N45O18. Many of the albumins and globulins—coagulable proteins contained in the animal tissues—have been isolated in a more or less definite form, and some of them have been found to yield substances akin to carbohydrates. Thyreoglobulin, the globulin of the thyroid gland, has been found to contain iodine, apparently as a normal constituent of a body which can be isolated as a definite proximate principle. The presence of this element is possibly connected with the curative value of the globulin in crétinism. A considerable amount of work on the vegetable albumins has also been done of late years; and some of them, as edestin from hemp seed and zein from maize, have been obtained in definite form.

The limits of this work preclude a more detailed account of one of the most interesting but at the same time one of the most obscure departments of chemistry. The field has hitherto been tilled in a somewhat intermittent and partial manner. Now that it has been entered by chemists of experience and resourcefulness, armed with modern methods of cultivation, it will doubtless soon yield a rich harvest of facts, valuable alike to the physiologist and the physician.

There can be no reasonable doubt that the chemical processes of organic life are essentially similar to those of the laboratory. The doctrine that a special “vital force” is concerned in the production of vital products receives no support from the teaching of modern science, and is, indeed, contradicted by it. At the same time, it must be admitted that we know very little as yet of the real agencies at work in the elaboration and mutations of chemical products in the living organism. Because we have effected the putting together of such a product by purely laboratory processes—it may be, indeed, by a variety of different and dissimilar processes—it by no means follows that any one of them is identical with that actually occurring in nature. The building up of materials in the plant by the agency of light, for example, has not yet been imitated in the laboratory. Many plant products are produced by the action of unorganised ferments—so-called enzymes—none of which the chemist has succeeded in creating.

Processes akin to condensation undoubtedly occur in the living organism; but the means by which they are effected are, in all probability, very different from anything known to the chemist at present. Many laboratory condensations are only accomplished at relatively high temperatures or under considerable pressure—or, in other words, under totally different conditions from those which obtain in the organism.


CHAPTER XI
On the Development of Physical Chemistry since 1850

Chemistry and physics are each complementary to the other: that region of inquiry in which they mutually overlap is known as physical chemistry. Its beginnings are practically contemporaneous with those of chemistry itself. Its main development has occurred, however, during the last twenty-five years. Certain of its leading features have been referred to already in connection with the establishment of the fundamental principles of chemistry, the explanation of the so-called gaseous laws, the constitution of gases, the relations of their volumes to heat and pressure, and the conditions affecting their transition to the liquid state.

As regards the molecular volumes of gases it has been shown that simple relations are obtained when quantities represented by their respective molecular weights are compared under identical conditions of temperature and pressure—that is, under circumstances in which equal numbers of molecules form the basis of comparison. The investigation of the molecular volumes of liquids is complicated by the uncertainty as to what constitutes in their case a valid condition of comparison. Kopp’s assumption that a comparable condition was the temperature at which the vapour pressures of the liquids are equal to the mean atmospheric pressure was justified by the fact that the boiling-points of liquids are approximately two thirds of their respective critical temperatures. His conclusions have been confirmed and extended by Lossen, Thorpe, and Schiff. It has been shown that the molecular volume of a liquid—that is, the product of its relative density at the boiling-point into its molecular weight—is in the main an additive function modified by constitutive influences. Definite values have thus been obtained for a number of the elements from a comparison of homologous or similarly constituted compounds; and in certain cases these are found to be practically identical with the values of the elements in the uncombined state.