Minute glands, of a reddish or purplish color, thickly cover the upper surface of the leaf, excepting towards the margins, the rest of the leaf being green. No glands are found upon the spikes or upon the foliaceous footstalk. From twenty to thirty polygonal cells, filled with purple fluid, constitute each gland. They are convex above, somewhat flattened underneath, and stand on very short pedicels, into which spiral vessels do not enter. They have the power of secretion under certain influences, and also that of absorption. Minute octofid projections, of a reddish-brown color, are scattered in considerable numbers over the footstalk, the backs of the leaves and the spikes, with a few on the upper surfaces of the lobes.

The sensitive filaments, which are a little more than one-twentieth of an inch in length, and thin, delicate and tapering to a point, are formed of several rows of elongated cells, filled with a purplish fluid. They are sometimes bifid or even trifid at the apex, and towards the base there is a constriction formed of broader cells, and beneath the constriction an articulation, supported on an enlarged base, consisting of differently shaped polygonal cells. As the filaments project at right angles to the surface of the leaf, they would have been in danger of being broken off whenever the lobes closed together had it not been for the articulation, which allows them to bend flat down. So exquisitely sensitive are these filaments, from their tips to their bases, to a momentary touch, that it is hardly possible to touch them even so lightly or quickly with any hard object without causing the lobes to close, but a piece of delicate human hair, two and a-half inches in length, held dangling over a filament so as to touch it, or pinches of fine wheaten flour, dropped from a height, produce no effect. Though not glandular, and hence incapable of secretion, yet the filaments by their sensitiveness to a momentary touch, which is followed by the rapid closure of the lobes of the leaf, assure to Dionæa the necessary supply of insect food for all its wants.

Inorganic bodies, even of large size, such as bits of stone, glass and such like, or organic bodies not containing nitrogeneous matter in a soluble condition, as bits of cork, wood, moss for examples, or bodies containing soluble nitrogeneous matter, if perfectly dry, such as small pieces of meat, albumen, gelatine, etc., may be long left on the lobes, and no movement is excited. But when nitrogeneous organic bodies, which are all damp, are left on the lobes, the result is widely different, for these then close by a slow and gradual movement and not in a rapid manner as when one of the sensitive filaments is touched by a hard substance. Small purplish, almost sessile glands, as has already been stated, thickly cover the upper surface of the lobes. These have the power both of secretion and absorption, but they do not secrete until excited by the absorption of nitrogeneous matter. No other excitement, as far as experiments show, produces this effect. When the lobes are made to close over a bit of meat or an insect, the glands over the entire surface of the leaf emit a copious discharge, as in this case the glands on both sides are pressed against the meat or insect, the secretion being twice as great as when the one or the other is laid on the surface of a single lobe; and as the two lobes come into almost close contact the secretion, containing dissolved animal matter, diffuses itself by capillary attraction, causing fresh glands on both sides to begin secreting in a continually widening circle. The secretion is almost colorless, slightly mucilaginous, moderately acid, and so copious at times in the furrow over the mid-rib as to trickle down to the earth. But all this secretion is for the purposes of digestion. Be the animal matter which the enclosed object yields ever so little, it serves as a peptogene, and the glands on the surface of the leaf pour forth their acid discharge, which acts like the gastric juice of animals.

VENUS’S FLY-TRAP.
How It Captures Insects.

Now as to the manner in which insects are caught by the leaves of Dionæa muscipula. In its native country they are caught in large numbers, but whether they are attracted in any special way no one seems to know. Both lobes close with astonishing quickness as soon as a filament is touched, and as they stand at less than a right angle to each other, they have an excellent chance of capturing any intruder. The chief seat of the movement is near the mid-rib, but is not restricted to this part. Each lobe, when the lobes come together, curves inwards across its whole breadth, the marginal spikes alone not becoming curved. From the curving inwards of the two lobes, as they advance towards each other, the straight marginal spikes intercross by their apices at first, and ultimately by their bases. The leaf is then completely shut and encloses a shallow cavity. If made to shut merely by the touching of one of the sensitive filaments, or by the inclusion of an object not yielding soluble nitrogeneous matter, the two lobes retain their inwardly concave form until they re-expand. The re-expansion, when no organic matter is enclosed, varies according to circumstances, a leaf in one instance being fully re-expanded in thirty-two hours.

But the lobes, when soluble nitrogeneous matter is included, instead of remaining concave, thus containing within a concavity, slowly press closely together throughout their entire breadth, and as this takes place the margins gradually become a little everted, so that the spikes, which at first intercrossed, at last project in two parallel rows. So firmly do they become pressed together that, if any large insect has been caught, a corresponding projection is clearly visible on the outside of the leaf. When the two lobes are thus completely closed, they resist being opened, as by a thin wedge driven with astonishing force between them, and are generally ruptured rather than yield. If not ruptured, they close again with quite a loud flap. The slow movement spoken of, excited by the absorption of diffused animal matter, suffices for its final purpose, whilst the movement brought on by the touching of one of the sensitive filaments is rapid, and thus indispensable for the capturing of insects.

Leaves remain shut for a longer time over insects, especially if the latter are large, than over meat. In many instances where they have remained for a long period over insects naturally caught, they were more or less torpid when they reopened, and generally so much so during many succeeding days that no excitement of the filaments caused the least movement. Vigorous leaves will sometimes devour prey several times, but ordinarily twice, or, quite often, once is enough to render them unserviceable.

What purpose the marginal spikes, which form so conspicuous a feature in the appearance of the plant, subserve was unknown until the genius of Darwin solved the mystery. It was he that showed that elongated spaces between the spikes, varying from one-fifteenth to one-tenth of an inch in breadth according to the size of the leaf, are left open for a short time before the edges of the lobes come into contact, consequent upon the intercrossing of the tips of the marginal spikes first, thus enabling an insect whose body is not thicker than these measurements to escape, when disturbed by the closing lobes and the increasing darkness, quite easily between the crossed spikes. Moderately sized insects, if they try to escape between the bars, will be pushed back into the horrid prison with the slowly closing walls, for the spikes continue to close more and more until the lobes are brought into contact. Very strong insects, however, manage to effect their release. It would manifestly be a great disadvantage to the plant to remain many days clasped over a minute insect, and as many additional days or weeks in recovering its sensibility, inasmuch as a very small insect would afford but little nourishment. Far better would it be for the plant to wait until a moderately large insect was captured, and to allow the little ones to escape, and this advantage is gained by the slow intercrossing of the marginal spikes, which, acting like the large meshes of a fishing-net, allow the small and worthless fry to pass through.

Touching any one of the six filaments is sufficient to cause both lobes to close, these becoming at the instant incurved throughout their entire breadth. The stimulus must therefore radiate in all directions from any one filament, and it must also be transmitted with considerable rapidity across the leaf, for in all ordinary cases, as far as the eye can judge, both lobes close at the same time. Physiologists generally believe that in irritable plants the excitement is transmitted along, or in close connection with, the fibro-vascular bundles. Those in Dionæa seem at first sight to favor this belief, for they run up the mid-rib in a great bundle, sending off small bundles almost at right angles on each side, which bifurcate occasionally as they stretch towards the margin, the marginal branches from adjoining branches uniting and entering the marginal spikes. Thus a continuous zigzag line of vessels runs round the whole circumference of the leaf, while in the mid-rib all the vessels are in close contiguity, so that all parts of the leaf seem to be brought into some degree of communication. The presence of vessels, however, is not necessary for the transmission of the motor impulse, for it is transmitted from the apices of the sensitive filaments, which are hardly one-tenth of an inch in length, into which no vessels are seen to enter. Slits made close to the bases of the filaments, parallel to the mid-rib, and thus directly across the course of the vessels, sometimes on the inner and sometimes on the outer sides of the filaments, do not interfere with the transmission of the motor impulse along the vessels, and conclusively show that there is no necessity for a direct line of communication from the filament, which is touched towards the mid-rib and opposite lobe, or towards the outer parts of the same lobe. With respect to the movement of the leaves, the wonderful discovery made by Dr. Burdon Sanderson, and published in 1874, offers an easy explanation. There is, says this distinguished authority, a normal electrical current in the blade and footstalk, which, when the leaves are irritated, is disturbed in the same manner as is the muscle of an animal when contraction takes place.