To illustrate this subject still further, suppose we have a piece of catgut stretched between two pins; I lay hold of it in the middle and pull it sideways; I let it go, and you will observe that it first straightens itself or returns to its original position. This depends on the elasticity of its particles, which tend to reunite when they have been separated by an external force, just in the same way that the particles of a piece of caoutchouc or Indian rubber attract each other when pulled asunder; and this force not only enables the string to restore itself to its former situation, but will carry it nearly to an equal distance on the other side, just in the same manner as a ball falling down an inclined plane will rise nearly to the same height up another, or a pendulum will rise nearly to the height from which it fell.

In this way will a string move backwards and forwards, till friction and the resistance of the air have destroyed the velocity which it acquired by the force of elasticity.

It is obvious that when a string is thus let fly from the finger, whatever be its own motion, such will also be the motion of the particles of the air which fly before it: the air will be driven forwards, and by that means condensed. When this condensed air expands itself, it will expand not only towards the string, but as its elasticity acts in all directions, it will also expand itself forwards and condense the air that is beyond it, this last condensed air, by its expansion, will produce the same effect on the air that lies still further forwards, and thus the motion produced in the air, by the vibration of the elastic string, is constantly carried forwards and conveyed to the ear.

It will be proper however to observe, that these pulses are sometimes produced without any such vibration of the sounding body, as we find it in musical strings and bells. In these cases we have to discover by what cause these condensations or pulses may be produced without any apparent vibrations in what is considered as the sounding body. We have two or three instances of this kind; one in wind instruments, such as the flute or organ pipe; another in the discharge of a gun.

In an organ, or flute, the air, which is driven through the pipe, strikes against the edge of the lips of the instrument in its passage, and by being accumulated there, is condensed, and this condensation produces waves or pulses in the air.

When a gun is discharged, a great quantity of air is produced, by the firing of the gunpowder, which being violently propelled from the piece, condenses the air that encompasses the space where the expansion happens; for whatever is driven out from the space where the expansion is made will be forcibly driven into the space all around it. This condensation forms the first pulse, and as this, by its elasticity, expands again, pulses of the same sort will be produced and propagated forwards.

There is likewise another curious instance of the production of sound, when a tube is held over a stream of inflamed hydrogen gas issuing out of a capillary tube in a bottle.

Sounding bodies propagate their motions on all sides, directly forwards, by successive condensations and rarefactions, so that sound is driven in all directions, backwards and forwards, upwards and downwards, and on every side; the pulses go on succeeding each other like circles in disturbed water.

Sounds differ from each other both with respect to their tone and intensity: in respect to their tone, they are distinguished into grave and acute: in respect to their intensity, they are distinguished into loud and low, or strong and weak. The tone of a sound depends on the velocity with which the vibrations are performed, for the greater the number of vibrations in a given time, the more acute will be the tone, and on the contrary, the smaller the number, the more grave it will be. The tone of a sound is not altered by the distance of the ear from the sounding body; but the intensity or strength of any sound depends on the force with which the waves of the air strike the ear; and this force is different at different distances; so that a sound which is very loud when we are near the body that produces it, will be weaker if we are further from it, though its tone will suffer no alteration; and the distance may be so great that we cannot hear it at all. It has been demonstrated, that the intensity of sound at different distances from the sounding body is inversely as the square of the distance.

Sound moves with the same velocity at all distances from the sounding body, otherwise it would not produce the same tone at all distances. Sounds of different tones likewise move with the same velocity. This is evident from a peal of bells being heard in the same order in which they are rung, whether we are near, or at a distance.