It is likewise found that sounds of the same tone but of different intensities are propagated with the same velocity. A low sound cannot indeed be heard so far as a loud one; but sounds, whether low or loud, will be conveyed in an equal time to any equal distance at which they can both be heard. The report of a cannon does not move faster, or pass over a given space sooner, than the sound of a musical string.
The principal cause of the decay of sound is the want of perfect elasticity in the air: whence it happens that every subsequent particle has not the entire motion of the preceding particle communicated to it, as is the case with equal and perfectly elastic bodies; consequently the further the motion is propagated, the more will the velocity with which the particles move be diminished; the condensation of the air will be diminished also, and consequently its effect on the ear. That the want of perfect elasticity in the air is the principal cause of the decay of sound, appears from this, that sounds are perceived more distinctly when the north and easterly winds prevail, at which time the air is dry and dense, as appears from the hygrometer and barometer; and, of course, the air in this state must be more elastic, for the vapours diffused through the atmosphere, unless dilated by intense heat, diminish the spring of the air.
That sound is not propagated to all distances instantaneously, but requires a sensible time for its passage from one place to another, is evident from the discharge of a gun at a distance; for the report is not heard till some time after the flash is seen. Light moves much more swiftly than sound; it comes from the sun in eight minutes, which is at the rate of 74,420 leagues in a second; so that the velocity of light may be considered as instantaneous, at any distance on the earth; and, as sound takes up a considerable time in its passage, the interval between the flash and the report of the gun shows the space it passes over in a given time, which is found to be 1142 feet in a second; so that if three seconds elapse between the time when we see the flash and hear the report of the gun, it must be distant 1142 yards.
From experiments that have been made at different times, by various philosophers, we may collect the following results. First, That the mean velocity of sound is a mile in about 4 3/4 seconds, or 1142 feet in a second of time. Secondly, That all sounds, whether they be weak or strong, have the same velocity. Thirdly, That sound moves over equal spaces in equal times, from the beginning to the end.
The tone of a musical string, or a bell, appears continuous. This depends upon a law of sensation, formerly mentioned, namely, that impressions made upon any of the organs of sense do not immediately vanish, but remain some time; and we hear sound continuous from these vibrations, for the same reason that we hear it continuous when we draw a stick quickly along a rail, or a quill along the teeth of a comb; the vibrations succeed each other so quickly that we hear the succeeding before the effect of the preceding is worn off; though it must be evident that the impression produced by each pulse or wave of the air is perfectly distinct and insulated.
The act of combining sounds in such a manner as to be agreeable to the ear, is called music. This art is usually divided into melody and harmony. An agreeable succession of sounds is called melody; but when two or more sounds are produced together, and afford an agreeable sensation, the effect is called harmony. When two sounds are produced together, and afford pleasure to the sense of hearing, the effect is called a concord; but when the sensation produced is harsh or disagreeable, it is called a discord. These different effects seem to depend upon the coincidence of the vibrations of the two strings, and consequently on the coincidence of the pulses which they excite in the air. When the strings are equally stretched, and of the same length and thickness, their vibrations will always coincide, and they produce a sound so similar to each other, that it is called unison, which is the most perfect concord. When one string is only half the length of the other, the vibrations coincide at every second vibration of the shorter string: this produces a compound sound, which is more agreeable to the ear than any other, except the unison; this note, when compared with the tone produced by the longer string, is called the octave to it, because the interval between the two notes is so divided by musicians that from one to the other they reckon eight different tones.
If the strings be of the length, two and three, the coincidence of the pulses will happen less frequently, viz. at every third vibration of the shorter string, and the concord will be less perfect. This forms what is called a fifth. The less frequent the coincidence of the vibrations, the less perfect will be the concord, or the less pleasure will it afford to the mind; till the vibrations coincide so seldom, that the sound produced by both strings at once is harsh and disagreeable, and is called a discord.
The effects of music upon the mind, the power by which it moves the heart, touches the passions, and excites sometimes the highest pleasure, and sometimes the deepest melancholy, depend upon melody. By a simple melody the ignorant are affected as well as those skilled in music. The pleasures arising from harmony or a combination of sounds are acquired rather than natural. Its pleasures are the result of experience and knowledge in music; music affords a source of innocent and inexhaustible pleasure, but its effects are different on different persons: some are enthusiastically fond of it, while others hear the sweetest airs with a listlessness bordering upon indifference. This has been supposed to depend on a musical ear, which is not given by nature to all. The cause of this difference is by no means evident. It does not depend on the delicacy of the sense of hearing, for there are some persons half deaf, who have the greatest relish for music; while others who have a very acute sense of hearing have no relish for music. In some instances I think a musical ear has been acquired where it did not seem originally to exist.
The force of sound is increased by the reflection of many bodies, particularly such as are hard or elastic, which receive the waves or pulses of the air and reflect them back again; these reflected pulses, striking the ear along with the original, strengthen the original sound. Hence it is, that the voice of a speaker is louder, and more distinctly heard, in a room than in the open air. I said that these reflected sounds entered the ear at the same time with the original: this however is not strictly the case, for they must enter the ear after the original, because the sound has a greater space to move over: but they enter the ear so quickly after the original that our sense cannot distinguish the difference. If however the reflecting body should be placed at such a distance, that the reflected sound should enter the ear some considerable or sensible time after the original, an echo or distinct sound would be heard.
It appears from experiment that the ear of an experienced musician can only distinguish such sounds as follow each other at the rate of nine or ten in a second, or any lower rate; and therefore that we may have a distinct perception of the direct and reflected sound, there should at least be an interval of 1/9 of a second; but in this time sound passes over one hundred and twenty seven feet, and consequently, unless the space between the sounding body and the reflecting surface, added to that between the reflecting surface and the ear, be greater than one hundred and twenty seven feet, no echo will be heard, because the reflected sound will enter the ear so soon after the original, that the difference cannot be distinguished; and therefore it will only serve to augment the original sound.