"Two years ago, M. Sars, Swedish Government Inspector of Fisheries, had an opportunity, in his official capacity, of dredging off the Loffoten Islands at a depth of 300 fathoms. I visited Norway shortly after his return, and had an opportunity of studying with his father, Professor Sars, some of his results. Animal forms were abundant; many of them were new to science; and among them was one of surpassing interest, the small crinoid, of which you have a specimen, and which we at once recognised as a degraded type of the Apiocrinidoe, an order hitherto regarded as extinct, which attained its maximum in the Pear Encrinites of the Jurassic period, and whose latest representative hitherto known was the Bourguettocrinus of the chalk. Some years previously, Mr. Absjornsen, dredging in 200 fathoms in the Hardangerfjord, procured several examples of a Starfish (Brisinga), which seems to find its nearest ally in the fossil genus Protaster. These observations place it beyond a doubt that animal life is abundant in the ocean at depths varying from 200 to 300 fathoms, that the forms at these great depths differ greatly from those met with in ordinary dredgings, and that, at all events in some cases, these animals are closely allied to, and would seem to be directly descended from, the Fauna of the early tertiaries.

"I think the latter result might almost have been anticipated; and, probably, further investigation will largely add to this class of data, and will give us an opportunity of testing our determinations of the zoological position of some fossil types by an examination of the soft parts of their recent representatives. The main cause of the destruction, the migration, and the extreme modification of animal types, appear to be change of climate, chiefly depending upon oscillations of the earth's crust. These oscillations do not appear to have ranged, in the Northern portion of the Northern Hemisphere, much beyond 1,000 feet since the commencement of the Tertiary Epoch. The temperature of deep waters seems to be constant for all latitudes at 39°; so that an immense area of the North Atlantic must have had its conditions unaffected by tertiary or post-tertiary oscillations."[8]

[Footnote 8: The Depths of the Sea, pp. 51-52.]

As we shall see, the assumption that the temperature of the deep sea is everywhere 39° F. (4° Cent.) is an error, which Dr. Wyville Thomson adopted from eminent physical writers; but the general justice of the reasoning is not affected by this circumstance, and Dr. Thomson's expectation has been, to some extent, already verified.

Thus besides Globigerina, there are eighteen species of deep-sea Foraminifera identical with species found in the chalk. Imbedded in the chalky mud of the deep sea, in many localities, are innumerable cup- shaped sponges, provided with six-rayed silicious spicula, so disposed that the wall of the cup is formed of a lacework of flinty thread. Not less abundant, in some parts of the chalk formation, are the fossils known as Ventriculites, well described by Dr. Thomson as "elegant vases or cups, with branching root-like bases, or groups of regularly or irregularly spreading tubes delicately fretted on the surface with an impressed network like the finest lace"; and he adds, "When we compare such recent forms as Aphrocallistes, Iphiteon, Holtenia, and Askonema, with certain series of the chalk Ventriculites, there cannot be the slightest doubt that they belong to the same family—in some cases to very nearly allied genera."[9]

[Footnote 9: The Depths of the Sea, p. 484.]

Professor Duncan finds "several corals from the coast of Portugal more nearly allied to chalk forms than to any others."

The Stalked Crinoids or Feather Stars, so abundant in ancient times, are now exclusively confined to the deep sea, and the late explorations have yielded forms of old affinity, the existence of which has hitherto been unsuspected. The general character of the group of star fishes imbedded in the white chalk is almost the same as in the modern Fauna of the deep Atlantic. The sea urchins of the deep sea, while none of them are specifically identical with any chalk form, belong to the same general groups, and some closely approach extinct cretaceous genera.

Taking these facts in conjunction with the positive evidence of the existence, during the Cretaceous epoch, of a deep ocean where now lies the dry land of central and southern Europe, northern Africa, and western and southern Asia; and of the gradual diminution of this ocean during the older tertiary epoch, until it is represented at the present day by such teacupfuls as the Caspian, the Black Sea, and the Mediterranean; the supposition of Dr. Thomson and Dr. Carpenter that what is now the deep Atlantic, was the deep Atlantic (though merged in a vast easterly extension) in the Cretaceous epoch, and that the Globigerina mud has been accumulating there from that time to this, seems to me to have a great degree of probability. And I agree with Dr. Wyville Thomson against Sir Charles Lyell (it takes two of us to have any chance against his authority) in demurring to the assertion that "to talk of chalk having been uninterruptedly formed in the Atlantic is as inadmissible in a geographical as in a geological sense."

If the word "chalk" is to be used as a stratigraphical term and restricted to Globigerina mud deposited during the Cretaceous epoch, of course it is improper to call the precisely similar mud of more recent date, chalk. If, on the other hand, it is to be used as a mineralogical term, I do not see how the modern and the ancient chalks are to be separated—and, looking at the matter geographically, I see no reason to doubt that a boring rod driven from the surface of the mud which forms the floor of the mid-Atlantic would pass through one continuous mass of Globigerina mud, first of modern, then of tertiary, and then of mesozoic date; the "chalks" of different depths and ages being distinguished merely by the different forms of other organisms associated with the Globigerinoe.