It was very soon made out that these yeast organisms, to which Turpin gave the name of Torula cerevisioe, were more nearly allied to the lower Fungi than to anything else. Indeed Turpin, and subsequently Berkeley and Hoffmann, believed that they had traced the development of the Torula into the well-known and very common mould—the Penicillium glaucum. Other observers have not succeeded in verifying these statements; and my own observations lead me to believe, that while the connection between Torula and the moulds is a very close one, it is of a different nature from that which has been supposed. I have never been able to trace the development of Torula into a true mould; but it is quite easy to prove that species of true mould, such as Penicillium, when sown in an appropriate nidus, such as a solution of tartrate of ammonia and yeast-ash, in water, with or without sugar, give rise to Toruloe, similar in all respects to T. cerevisioe, except that they are, on the average, smaller. Moreover, Bail has observed the development of a Torula larger than T. cerevisioe, from a Mucor, a mould allied to Penicillium.

It follows, therefore, that the Toruloe, or organisms of yeast, are veritable plants; and conclusive experiments have proved that the power which causes the rearrangement of the molecules of the sugar is intimately connected with the life and growth of the plant. In fact, whatever arrests the vital activity of the plant also prevents it from exciting fermentation.

Such being the facts with regard to the nature of yeast, and the changes which it effects in sugar, how are they to be accounted for? Before modern chemistry had come into existence, Stahl, stumbling, with the stride of genius, upon the conception which lies at the bottom of all modern views of the process, put forward the notion that the ferment, being in a state of internal motion, communicated that motion to the sugar, and thus caused its resolution into new substances. And Lavoisier, as we have seen, adopts substantially the same view. But Fabroni, full of the then novel conception of acids and bases and double decompositions, propounded the hypothesis that sugar is an oxide with two bases, and the ferment a carbonate with two bases; that the carbon of the ferment unites with the oxygen of the sugar, and gives rise to carbonic acid; while the sugar, uniting with the nitrogen of the ferment, produces a new substance analogous to opium. This is decomposed by distillation, and gives rise to alcohol. Next, in 1803, Thénard propounded a hypothesis which partakes somewhat of the nature of both Stahl's and Fabroni's views. "I do not believe with Lavoisier," he says, "that all the carbonic acid formed proceeds from the sugar. How, in that case, could we conceive the action of the ferment on it? I think that the first portions of the acid are due to a combination of the carbon of the ferment with the oxygen of the sugar, and that it is by carrying off a portion of oxygen from the last that the ferment causes the fermentation to commence—the equilibrium between the principles of the sugar being disturbed, they combine afresh to form carbonic acid and alcohol."

The three views here before us may be familiarly exemplified by supposing the sugar to be a card-house. According to Stahl, the ferment is somebody who knocks the table, and shakes the card-house down; according to Fabroni, the ferment takes out some cards, but puts others in their places; according to Thénard, the ferment simply takes a card out of the bottom story, the result of which is that all the others fall.

As chemistry advanced, facts came to light which put a new face upon Stahl's hypothesis, and gave it a safer foundation than it previously possessed. The general nature of these phenomena may be thus stated:—A body, A, without giving to, or taking from, another body B, any material particles, causes B to decompose into other substances, C, D, E, the sum of the weights of which is equal to the weight of B, which decomposes. Thus, bitter almonds contain two substances, amygdalin and synaptase, which can be extracted, in a separate state, from the bitter almonds. The amygdalin thus obtained, if dissolved in water, undergoes no change; but if a little synaptase be added to the solution, the amygdalin splits up into bitter almond oil, prussic acid, and a kind of sugar.

A short time after Cagniard de la Tour discovered the yeast plant, Liebig, struck with the similarity between this and other such processes and the fermentation of sugar, put forward the hypothesis that yeast contains a substance which acts upon sugar, as synaptase acts upon amygdalin. And as the synaptase is certainly neither organized nor alive, but a mere chemical substance, Liebig treated Cagniard de la Tour's discovery with no small contempt, and, from that time to the present, has steadily repudiated the notion that the decomposition of the sugar is, in any sense, the result of the vital activity of the Torula. But, though the notion that the Torula is a creature which eats sugar and excretes carbonic acid and alcohol, which is not unjustly ridiculed in the most surprising paper that ever made its appearance in a grave scientific journal,[4] may be untenable, the fact that the Toruloe are alive, and that yeast does not excite fermentation unless it contains living Toruloe, stands fast. Moreover, of late years, the essential participation of living organisms in fermentation other than the alcoholic, has been clearly made out by Pasteur and other chemists.

[Footnote 4: "Das enträthselte Geheimniss der geistigen Gährung (Vorlänfige briefliche Mittheilung)" is the title of an anonymous contribution to Wöhler and Liebig's Annalen der Pharmacie for 1839, in which a somewhat Rabelaisian imaginary description of the organisation of the "yeast animals" and of the manner in which their functions are performed, is given with a circumstantiality worthy of the author of Gulliver's Travels. As a specimen of the writer's humour, his account of what happens when fermentation comes to an end may suffice. "Sobald nämlich die Thiere keinen Zucker mehr vorfinden, so fressen sie sich gegenseitig selbst auf, was durch eine eigene Manipulation geschieht; alles wird verdant bis auf die Eier, welche unverändert durch den Darmkanal hineingehen; man hat zuletzt wieder gährungsfähige Hefe, nämlich den Saamen der Thiere, der übrig bleibt.">[ However, it may be asked, is there any necessary opposition between the so-called "vital" and the strictly physico-chemical views of fermentation? It is quite possible that the living Torula may excite fermentation in sugar, because it constantly produces, as an essential part of its vital manifestations, some substance which acts upon the sugar, just as the synaptase acts upon the amygdalin. Or it may be, that, without the formation of any such special substance, the physical condition of the living tissue of the yeast plant is sufficient to effect that small disturbance of the equilibrium of the particles of the sugar, which Lavoisier thought sufficient to effect its decomposition.

Platinum in a very fine state of division—known as platinum black, or noir de platine—has the very singular property of causing alcohol to change into acetic acid with great rapidity. The vinegar plant, which is closely allied to the yeast plant, has a similar effect upon dilute alcohol, causing it to absorb the oxygen of the air, and become converted into vinegar; and Liebig's eminent opponent, Pasteur, who has done so much for the theory and the practice of vinegar-making, himself suggests that in this case—

"La cause du phénomène physique qui accompagne la vie de la plante réside dans un état physique propre, analogue à celui du noir de platine. Mais il est essentiel de remarquer que cet état physique de la plante est étroitement lié avec la vie de cette plante."[5]

[Footnote 5: Etudes sur les Mycodermes, Comptes-Rendus, liv., 1862.]