It may be said:--"That is all very well, but you told us just now that there are probably something like a quarter of a million different kinds of living and extinct animals and plants, and a human life could not suffice for the examination of one-fiftieth part of all these." That is true, but then comes the great convenience of the way things are arranged; which is, that although there are these immense numbers of different kinds of living things in existence, yet they are built up, after all, upon marvellously few plans.
There are certainly more than 100,000 species of insects, and yet anybody who knows one insect--if a properly chosen one--will be able to have a very fair conception of the structure of the whole. I do not mean to say he will know that structure thoroughly, or as well as it is desirable he should know it; but he will have enough real knowledge to enable him to understand what he reads, to have genuine images in his mind of those structures which become so variously modified in all the forms of insects he has not seen. In fact, there are such things as types of form among animals and vegetables, and for the purpose of getting a definite knowledge of what constitutes the leading modifications of animal and plant life, it is not needful to examine more than a comparatively small number of animals and plants.
Let me tell you what we do in the biological laboratory which is lodged in a building adjacent to this. There I lecture to a class of students daily for about four-and-a-half months, and my class have, of course, their text-books; but the essential part of the whole teaching, and that which I regard as really the most important part of it, is a laboratory for practical work, which is simply a room with all the appliances needed for ordinary dissection. We have tables properly arranged in regard to light, microscopes, and dissecting instruments, and we work through the structure of a certain number of animals and plants. As, for example, among the plants, we take a yeast plant, a Protococcus, a common mould, a Chara, a fern, and some flowering plant; among animals we examine such things as an Amoeba, a Vorticella, and a fresh-water polype. We dissect a star-fish, an earth-worm, a snail, a squid, and a fresh-water mussel. We examine a lobster and a cray-fish, and a black beetle. We go on to a common skate, a cod-fish, a frog, a tortoise, a pigeon, and a rabbit, and that takes us about all the time we have to give. The purpose of this course is not to make skilled dissectors, but to give every student a clear and definite conception, by means of sense-images, of the characteristic structure of each of the leading modifications of the animal kingdom; and that is perfectly possible, by going no further than the length of that list of forms which I have enumerated. If a man knows the structure of the animals I have mentioned, he has a clear and exact, however limited, apprehension of the essential features of the organisation of all those great divisions of the animal and vegetable kingdoms to which the forms I have mentioned severally belong. And it then becomes possible for him to read with profit; because every time he meets with the name of a structure, he has a definite image in his mind of what the name means in the particular creature he is reading about, and therefore the reading is not mere reading. It is not mere repetition of words; but every term employed in the description, we will say, of a horse, or of an elephant, will call up the image of the things he had seen in the rabbit, and he is able to form a distinct conception of that which he has not seen, as a modification of that which he has seen.
I find this system to yield excellent results; and I have no hesitation whatever in saying, that any one who has gone through such a course, attentively, is in a better position to form a conception of the great truths of Biology, especially of morphology (which is what we chiefly deal with), than if he had merely read all the books on that topic put together.
The connection of this discourse with the Loan Collection of Scientific Apparatus arises out of the exhibition in that collection of certain aids to our laboratory work. Such of you as have visited that very interesting collection may have noticed a series of diagrams and of preparations illustrating the structure of a frog. Those diagrams and preparations have been made for the use of the students in the biological laboratory. Similar diagrams and preparations illustrating the structure of all the other forms of life we examine, are either made or in course of preparation. Thus the student has before him, first, a picture of the structure he ought to see; secondly, the structure itself worked out; and if with these aids, and such needful explanations and practical hints as a demonstrator can supply, he cannot make out the facts for himself in the materials supplied to him, he had better take to some other pursuit than that of biological science.
I should have been glad to have said a few words about the use of museums in the study of Biology, but I see that my time is becoming short, and I have yet another question to answer. Nevertheless, I must, at the risk of wearying you, say a word or two upon the important subject of museums. Without doubt there are no helps to the study of Biology, or rather to some branches of it, which are, or may be, more important than natural history museums; but, in order to take this place in regard to Biology, they must be museums of the future. The museums of the present do not, by any means, do so much for us as they might do. I do not wish to particularise, but I dare say many of you, seeking knowledge, or in the laudable desire to employ a holiday usefully, have visited some great natural history museum. You have walked through a quarter of a mile of animals, more or less well stuffed, with their long names written out underneath them; and, unless your experience is very different from that of most people, the upshot of it all is that you leave that splendid pile with sore feet, a bad headache, and a general idea that the animal kingdom is a "mighty maze without a plan." I do not think that a museum which brings about this result does all that may be reasonably expected from such an institution. What is needed in a collection of natural history is that it should be made as accessible and as useful as possible, on the one hand to the general public, and on the other to scientific workers. That need is not met by constructing a sort of happy hunting-ground of miles of glass cases; and, under the pretence of exhibiting everything putting the maximum amount of obstacle in the way of those who wish properly to see anything.
What the public want is easy and unhindered access to such a collection as they can understand and appreciate; and what the men of science want is similar access to the materials of science. To this end the vast mass of objects of natural history should be divided into two parts--one open to the public, the other to men of science, every day. The former division should exemplify all the more important and interesting forms of life. Explanatory tablets should be attached to them, and catalogues containing clearly-written popular expositions of the general significance of the objects exhibited should be provided. The latter should contain, packed into a comparatively small space, in rooms adapted for working purposes, the objects of purely scientific interest. For example, we will say I am an ornithologist. I go to examine a collection of birds. It is a positive nuisance to have them stuffed. It is not only sheer waste, but I have to reckon with the ideas of the bird-stuffer, while, if I have the skin and nobody has interfered with it, I can form my own judgment as to what the bird was like. For ornithological purposes, what is needed is not glass cases full of stuffed birds on perches, but convenient drawers into each of which a great quantity of skins will go. They occupy no great space and do not require any expenditure beyond their original cost. But for the edification of the public, who want to learn indeed, but do not seek for minute and technical knowledge, the case is different. What one of the general public walking into a collection of birds desires to see is not all the birds that can be got together. He does not want to compare a hundred species of the sparrow tribe side by side; but he wishes to know what a bird is, and what are the great modifications of bird structure, and to be able to get at that knowledge easily. What will best serve his purpose is a comparatively small number of birds carefully selected, and artistically, as well as accurately, set up; with their different ages, their nests, their young, their eggs, and their skeletons side by side; and in accordance with the admirable plan which is pursued in this museum, a tablet, telling the spectator in legible characters what they are and what they mean. For the instruction and recreation of the public such a typical collection would be of far greater value than any many-acred imitation of Noah's ark.
Lastly comes the question as to when biological study may best be pursued. I do not see any valid reason why it should not be made, to a certain extent, a part of ordinary school training. I have long advocated this view, and I am perfectly certain that it can be carried out with ease, and not only with ease, but with very considerable profit to those who are taught; but then such instruction must be adapted to the minds and needs of the scholars. They used to have a very odd way of teaching the classical languages when I was a boy. The first task set you was to learn the rules of the Latin grammar in the Latin language--that being the language you were going to learn! I thought then that this was an odd way of learning a language, but did not venture to rebel against the judgment of my superiors. Now, perhaps, I am not so modest as I was then, and I allow myself to think that it was a very absurd fashion. But it would be no less absurd, if we were to set about teaching Biology by putting into the hands of boys a series of definitions of the classes and orders of the animal kingdom, and making them repeat them by heart. That is so very favourite a method of teaching, that I sometimes fancy the spirit of the old classical system has entered into the new scientific system, in which case I would much rather that any pretence at scientific teaching were abolished altogether. What really has to be done is to get into the young mind some notion of what animal and vegetable life is. In this matter, you have to consider practical convenience as well as other things. There are difficulties in the way of a lot of boys making messes with slugs and snails; it might not work in practice. But there is a very convenient and handy animal which everybody has at hand, and that is himself; and it is a very easy and simple matter to obtain common plants. Hence the general truths of anatomy and physiology can be taught to young people in a very real fashion by dealing with the broad facts of human structure. Such viscera as they cannot very well examine in themselves, such as hearts, lungs, and livers, may be obtained from the nearest butcher's shop. In respect to teaching something about the biology of plants, there is no practical difficulty, because almost any of the common plants will do, and plants do not make a mess--at least they do not make an unpleasant mess; so that, in my judgment, the best form of Biology for teaching to very young people is elementary human physiology on the one hand, and the elements of botany on the other; beyond that I do not think it will be feasible to advance for some time to come. But then I see no reason, why, in secondary schools, and in the Science Classes which are under the control of the Science and Art Department--and which I may say, in passing, have in my judgment, done so very much for the diffusion of a knowledge of science over the country--we should not hope to see instruction in the elements of Biology carried out, not perhaps to the same extent, but still upon somewhat the same principle as here. There is no difficulty, when you have to deal with students of the ages of fifteen or sixteen, in practising a little dissection and in getting a notion of, at any rate, the four or five great modifications of the animal form; and the like is true in regard to the higher anatomy of plants.
While, lastly, to all those who are studying biological science with a view to their own edification merely, or with the intention of becoming zoologists or botanists; to all those who intend to pursue physiology--and especially to those who propose to employ the working years of their lives in the practice of medicine--I say that there is no training so fitted, or which may be of such important service to them, as the discipline in practical biological work which I have sketched out as being pursued in the laboratory hard by.
* * * * *