"I shall try to explain our whole bodily machinery in such a way, that it will be no more necessary for us to suppose that the soul produces such movements as are not voluntary, than it is to think that there is in a clock a soul which causes it to show the hours." [[3]] These words of Descartes might be appropriately taken as a motto by the author of any modern treatise on physiology.
But though, as I think, there is no doubt that Descartes was the first to propound the fundamental conception of the living body as a physical mechanism, which is the distinctive feature of modern, as contrasted with ancient physiology, he was misled by the natural temptation to carry out, in all its details, a parallel between the machines with which he was familiar, such as clocks and pieces of hydraulic apparatus, and the living machine. In all such machines there is a central source of power, and the parts of the machine are merely passive distributors of that power. The Cartesian school conceived of the living body as a machine of this kind; and herein they might have learned from Galen, who, whatever ill use he may have made of the doctrine of "natural faculties," nevertheless had the great merit of perceiving that local forces play a great part in physiology.
The same truth was recognised by Glisson, but it was first prominently brought forward in the Hallerian doctrine of the "vis insita" of muscles. If muscle can contract without nerve, there is an end of the Cartesian mechanical explanation of its contraction by the influx of animal spirits.
The discoveries of Trembley tended in the same direction. In the freshwater Hydra, no trace was to be found of that complicated machinery upon which the performance of the functions in the higher animals was supposed to depend. And yet the hydra moved, fed, grew, multiplied, and its fragments exhibited all the powers of the whole. And, finally, the work of Caspar F. Wolff, [[4]] by demonstrating the fact that the growth and development of both plants and animals take place antecedently to the existence of their grosser organs, and are, in fact, the causes and not the consequences of organisation (as then understood), sapped the foundations of the Cartesian physiology as a complete expression of vital phenomena.
For Wolff, the physical basis of life is a fluid, possessed of a "vis essentialis" and a "solidescibilitas," in virtue of which it gives rise to organisation; and, as he points out, this conclusion strikes at the root of the whole iatro-mechanical system.
In this country, the great authority of John Hunter exerted a similar influence; though it must be admitted that the too sibylline utterances which are the outcome of Hunter's struggles to define his conceptions are often susceptible of more than one interpretation. Nevertheless, on some points Hunter is clear enough. For example, he is of opinion that "Spirit is only a property of matter" ("Introduction to Natural History," p. 6), he is prepared to renounce animism, (l.c. p. 8), and his conception of life is so completely physical that he thinks of it as something which can exist in a state of combination in the food. "The aliment we take in has in it, in a fixed state, the real life; and this does not become active until it has got into the lungs; for there it is freed from its prison" ("Observations on Physiology," p. 113). He also thinks that "It is more in accord with the general principles of the animal machine to suppose that none of its effects are produced from any mechanical principle whatever; and that every effect is produced from an action in the part; which action is produced by a stimulus upon the part which acts, or upon some other part with which this part sympathises so as to take up the whole action" (l.c. p. 152).
And Hunter is as clear as Wolff, with whose work he was probably unacquainted, that "whatever life is, it most certainly does not depend upon structure or organisation" (l.c. p. 114).
Of course it is impossible that Hunter could have intended to deny the existence of purely mechanical operations in the animal body. But while, with Borelli and Boerhaave, he looked upon absorption, nutrition, and secretion as operations effected by means of the small vessels, he differed from the mechanical physiologists, who regarded these operations as the result of the mechanical properties of the small vessels, such as the size, form, and disposition of their canals and apertures. Hunter, on the contrary, considers them to be the effect of properties of these vessels which are not mechanical but vital. "The vessels," says he, "have more of the polypus in them than any other part of the body," and he talks of the "living and sensitive principles of the arteries," and even of the "dispositions or feelings of the arteries." "When the blood is good and genuine the sensations of the arteries, or the dispositions for sensation, are agreeable.... It is then they dispose of the blood to the best advantage, increasing the growth of the whole, supplying any losses, keeping up a due succession, etc." (l.c. p. 133).
If we follow Hunter's conceptions to their logical issue, the life of one of the higher animals is essentially the sum of the lives of all the vessels, each of which is a sort of physiological unit, answering to a polype; and, as health is the result of the normal "action of the vessels," so is disease an effect of their abnormal action. Hunter thus stands in thought, as in time, midway between Borelli on the one hand, and Bichat on the other.
The acute founder of general anatomy, in fact, outdoes Hunter in his desire to exclude physical reasonings from the realm of life. Except in the interpretation of the action of the sense organs, he will not allow physics to have anything to do with physiology.