In the currently accepted language of science, the cause of motion, in all such cases as this, when bodies tend to move towards or away from one or another, without any discernible impact of other bodies, is termed a 'force,' which is called 'attractive' in the one case, and 'repulsive' in the other. And such attractive or repulsive forces are often spoken of as if they were real things, capable of exerting a pull, or a push, upon the particles of matter concerned. Thus the potential energy of the stone is commonly said to be due to the 'force' of gravity which is continually operating upon it.
Another illustration may make the case plainer. The bob of a pendulum swings first to one side and then to the other of the centre of the arc which it describes. Suppose it to have just reached the summit of its right-hand half-swing. It is said that the 'attractive forces' of the bob for the earth, and of the earth for the bob, set the former in motion; and as these 'forces' are continually in operation, they confer an accelerated velocity on the bob; until, when it reaches the centre of its swing, it is, so to speak, fully charged with kinetic energy. If, at this moment, the whole material universe, except the bob, were abolished, it would move for ever in the direction of a tangent to the middle of the arc described. As a matter of fact, it is compelled to travel through its left-hand half-swing, and thus virtually to go up hill. Consequently, the 'attractive forces' of the bob and the earth are now acting against it, and constitute a resistance which the charge of kinetic energy has to overcome. But, as this charge represents the operation of the attractive forces during the passage of the bob through the right-hand half-swing down to the centre of the arc, so it must needs be used up by the passage of the bob upwards from the centre of the arc to the summit of the left-hand half-swing. Hence, at this point, the bob comes to a momentary rest. The last fraction of kinetic energy is just neutralised by the action of the attractive forces, and the bob has only potential energy equal to that with which it started. So that the sum of the phenomena may be stated thus: At the summit of either half-arc of its swing, the bob has a certain amount of potential energy; as it descends it gradually exchanges this for kinetic energy, until at the centre it possesses an equivalent amount of kinetic energy; from this point onwards, it gradually loses kinetic energy as it ascends, until, at the summit of the other half-arc, it has acquired an exactly similar amount of potential energy. Thus, on the whole transaction, nothing is either lost or gained; the quantity of energy is always the same, but it passes from one form into the other.
To all appearance, the phenomena exhibited by the pendulum are not to be accounted for by impact: in fact, it is usually assumed that corresponding phenomena would take place if the earth and the pendulum were situated in an absolute vacuum, and at any conceivable distance from, one another. If this be so, it follows that there must be two totally different kinds of causes of motion: the one impact—a vera causa, of which, to all appearance, we have constant experience; the other, attractive or repulsive 'force'—a metaphysical entity which is physically inconceivable. Newton expressly repudiated the notion of the existence of attractive forces, in the sense in which that term is ordinarily understood; and he refused to put forward any hypothesis as to the physical cause of the so-called 'attraction of gravitation.' As a general rule, his successors have been content to accept the doctrine of attractive and repulsive forces, without troubling themselves about the philosophical difficulties which it involves. But this has not always been the case; and the attempt of Le Sage, in the last century, to show that the phenomena of attraction and repulsion are susceptible of explanation by his hypothesis of bombardment by ultra-mundane particles, whether tenable or not, has the great merit of being an attempt to get rid of the dual conception of the causes of motion which has hitherto prevailed. On this hypothesis, the hammering of the ultra-mundane corpuscles on the bob confers its kinetic energy, on the one hand, and takes it away on the other; and the state of potential energy means the condition of the bob during the instant at which the energy, conferred by the hammering during the one half-arc, has just been exhausted by the hammering during the other half-arc. It seems safe to look forward to the time when the conception of attractive and repulsive forces, having served its purpose as a useful piece of scientific scaffolding, will be replaced by the deduction of the phenomena known as attraction and repulsion, from the general laws of motion.
The doctrine of the conservation of energy which I have endeavored to illustrate is thus defined by the late Clerk Maxwell:
'The total energy of any body or system of bodies is a quantity which can neither be increased nor diminished by any mutual action of such bodies, though it may be transformed into any one of the forms of which energy is susceptible.' It follows that energy, like matter, is indestructible and ingenerable in nature. The phenomenal world, so far as it is material, expresses the evolution and involution of energy, its passage from the kinetic to the potential condition and back again. Wherever motion of matter takes place, that motion is effected at the expense of part of the total store of energy.
Hence, as the phenomena exhibited by living beings, in so far as they are material, are all molar or molecular motions, these are included under the general law. A living body is a machine by which energy is transformed in the same sense as a steam-engine is so, and all its movements, molar and molecular, are to be accounted for by the energy which is supplied to it. The phenomena of consciousness which arise, along with certain transformations of energy, cannot be interpolated in the series of these transformations, inasmuch as they are not motions to which the doctrine of the conservation of energy applies. And, for the same reason, they do not necessitate the using up of energy; a sensation has no mass and cannot be conceived to be susceptible of movement. That a particular molecular motion does give rise to a state of consciousness is experimentally certain; but the how and why of the process are just as inexplicable as in the case of the communication of kinetic energy by impact.
When dealing with the doctrine of the ultimate constitution of matter, we found a certain resemblance between the oldest speculations and the newest doctrines of physical philosophers. But there is no such resemblance between the ancient and modern views of motion and its causes, except in so far as the conception of attractive and repulsive forces may be regarded as the modified descendant of the Aristotelian conception of forms. In fact, it is hardly too much to say that the essential and fundamental difference between ancient and modern physical science lies in the ascertainment of the true laws of statics and dynamics in the course of the last three centuries; and in the invention of mathematical methods of dealing with all the consequences of these laws. The ultimate aim of modern physical science is the deduction of the phenomena exhibited by material bodies from physico-mathematical first principles. Whether the human intellect is strong enough to attain the goal set before it may be a question, but thither will it surely strive.
(3) Evolution.
The third great scientific event of our time, the rehabilitation of the doctrine of evolution, is part of the same tendency of increasing knowledge to unify itself, which has led to the doctrine of the conservation of energy. And this tendency, again, is mainly a product of the increasing strength conferred by physical investigation on the belief in the universal validity of that orderly relation of facts, which we express by the so-called 'Laws of Nature.'
Early stages of this theory