So much by way of general introduction to the subject on which I have to speak to-night. What I have hitherto stated is simply what we may call common knowledge, which everybody may acquaint himself with. And you know that what we call scientific knowledge is not any kind of conjuration, as people sometimes suppose, but it is simply the application of the same principles of common sense that we apply to common knowledge, carried out, if I may so speak, to knowledge which is uncommon. And all that we know now of this substance, yeast, and all the very strange issues to which that knowledge has led us, have simply come out of the inveterate habit, and a very fortunate habit for the human race it is, which scientific men have of not being content until they have routed out all the different chains and connections of apparently simple phenomena, until they have taken them to pieces and understood the conditions upon which they depend. I will try to point out to you now what has happened in consequence of endeavouring to apply this process of "analysis," as we call it, this teazing out of an apparently simple fact into all the little facts of which it is made up, to the ascertained facts relating to the barm or the yeast; secondly, what has come of the attempt to ascertain distinctly what is the nature of the products which are produced by fermentation; then what has come of the attempt to understand the relation between the yeast and the products; and lastly, what very curious side issues if I may so call them—have branched out in the course of this inquiry, which has now occupied somewhere about two centuries.
The first thing was to make out precisely and clearly what was the nature of this substance, this apparently mere scum and mud that we call yeast. And that was first commenced seriously by a wonderful old Dutchman of the name of Leeuwenhoek, who lived some two hundred years ago, and who was the first person to invent thoroughly trustworthy microscopes of high powers. Now, Leeuwenhoek went to work upon this yeast mud, and by applying to it high powers of the microscope, he discovered that it was no mere mud such as you might at first suppose, but that it was a substance made up of an enormous multitude of minute grains, each of which had just as definite a form as if it were a grain of corn, although it was vastly smaller, the largest of these not being more than the two-thousandth of an inch in diameter; while, as you know, a grain of corn is a large thing, and the very smallest of these particles were not more than the seven-thousandth of an inch in diameter. Leeuwenhoek saw that this muddy stuff was in reality a liquid, in which there were floating this immense number of definitely shaped particles, all aggregated in heaps and lumps and some of them separate. That discovery remained, so to speak, dormant for fully a century, and then the question was taken up by a French discoverer, who, paying great attention and having the advantage of better instruments than Leeuwenhoek had, watched these things and made the astounding discovery that they were bodies which were constantly being reproduced and growing; than when one of these rounded bodies was once formed and had grown to its full size, it immediately began to give off a little bud from one side, and then that bud grew out until it had attained the full size of the first, and that, in this way, the yeast particle was undergoing a process of multiplication by budding, just as effectual and just as complete as the process of multiplication of a plant by budding; and thus this Frenchman, Cagniard de la Tour, arrived at the conclusion—very creditable to his sagacity, and which has been confirmed by every observation and reasoning since—that this apparently muddy refuse was neither more nor less than a mass of plants, of minute living plants, growing and multiplying in the sugary fluid in which the yeast is formed. And from that time forth we have known this substance which forms the scum and the lees as the yeast plant; and it has received a scientific name—which I may use without thinking of it, and which I will therefore give you—namely, "Torula." Well, this was a capital discovery. The next thing to do was to make out how this torula was related to the other plants. I won't weary you with the whole course of investigation, but I may sum up its results, and they are these—that the torula is a particular kind of a fungus, a particular state rather, of a fungus or mould. There are many moulds which under certain conditions give rise to this torula condition, to a substance which is not distinguishable from yeast, and which has the same properties as yeast—that is to say, which is able to decompose sugar in the curious way that we shall consider by-and-by. So that the yeast plant is a plant belonging to a group of the Fungi, multiplying and growing and living in this very remarkable manner in the sugary fluid which is, so to speak, the nidus or home of the yeast.
That, in a few words, is, as far as investigation—by the help of one's eye and by the help of the microscope—has taken us. But now there is an observer whose methods of observation are more refined than those of men who use their eye, even though it be aided by the microscope; a man who sees indirectly further than we can see directly—that is, the chemist; and the chemist took up this question, and his discovery was not less remarkable than that of the microscopist. The chemist discovered that the yeast plant being composed of a sort of bag, like a bladder, inside which is a peculiar soft, semifluid material—the chemist found that this outer bladder has the same composition as the substance of wood, that material which is called "cellulose," and which consists of the elements carbon and hydrogen and oxygen, without any nitrogen. But then he also found (the first person to discover it was an Italian chemist, named Fabroni, in the end of the last century) that this inner matter which was contained in the bag, which constitutes the yeast plant, was a substance containing the elements carbon and hydrogen and oxygen and nitrogen; that it was what Fabroni called a vegeto-animal substance, and that it had the peculiarities of what are commonly called "animal products."
This again was an exceedingly remarkable discovery. It lay neglected for a time, until it was subsequently taken up by the great chemists of modern times, and they, with their delicate methods of analysis, have finally decided that, in all essential respects, the substance which forms the chief part of the contents of the yeast plant is identical with the material which forms the chief part of our own muscles, which forms the chief part of our own blood, which forms the chief part of the white of the egg; that, in fact, although this little organism is a plant, and nothing but a plant, yet that its active living contents contain a substance which is called "protein," which is of the same nature as the substance which forms the foundation of every animal organism whatever.
Now we come next to the question of the analysis of the products, of that which is produced during the process of fermentation. So far back as the beginning of the 16th century, in the times of transition between the old alchemy and the modern chemistry, there was a remarkable man, Von Helmont, a Dutchman, who saw the difference between the air which comes out of a vat where something is fermenting and common air. He was the man who invented the term "gas," and he called this kind of gas "gas silvestre"—so to speak gas that is wild, and lives in out of the way places—having in his mind the identity of this particular kind of air with that which is found in some caves and cellars. Then, the gradual process of investigation going on, it was discovered that this substance, then called "fixed air," was a poisonous gas, and it was finally identified with that kind of gas which is obtained by burning charcoal in the air, which is called "carbonic acid." Then the substance alcohol was subjected to examination, and it was found to be a combination of carbon, and hydrogen, and oxygen. Then the sugar which was contained in the fermenting liquid was examined and that was found to contain the three elements carbon, hydrogen, and oxygen. So that it was clear there were in sugar the fundamental elements which are contained in the carbonic acid, and in the alcohol. And then came that great chemist Lavoisier, and he examined into the subject carefully, and possessed with that brilliant thought of his which happens to be propounded exactly apropos to this matter of fermentation—that no matter is ever lost, but that matter only changes its form and changes its combinations—he endeavoured to make out what became of the sugar which was subjected to fermentation. He thought he discovered that the whole weight of the sugar was represented by the carbonic acid produced; that in other words, supposing this tumbler to represent the sugar, that the action of fermentation was as it were the splitting of it, the one half going away in the shape of carbonic acid, and the other half going away in the shape of alcohol. Subsequent inquiry, careful research with the refinements of modern chemistry, have been applied to this problem, and they have shown that Lavoisier was not quite correct; that what he says is quite true for about 95 per cent. of the sugar, but that the other 5 per cent., or nearly so, is converted into two other things; one of them, matter which is called succinic acid, and the other matter which is called glycerine, which you all know now as one of the commonest of household matters. It may be that we have not got to the end of this refined analysis yet, but at any rate, I suppose I may say—and I speak with some little hesitation for fear my friend Professor Roscoe here may pick me up for trespassing upon his province—but I believe I may say that now we can account for 99 per cent. at least of the sugar, and that 99 per cent. is split up into these four things, carbonic acid, alcohol, succinic acid, and glycerine. So that it may be that none of the sugar whatever disappears, and that only its parts, so to speak, are re-arranged, and if any of it disappears, certainly it is a very small portion.
Now these are the facts of the case. There is the fact of the growth of the yeast plant; and there is the fact of the splitting up of the sugar. What relation have these two facts to one another?
For a very long time that was a great matter of dispute. The early French observers, to do them justice, discerned the real state of the case, namely, that there was a very close connection between the actual life of the yeast plant and this operation of the splitting up of the sugar; and that one was in some way or other connected with the other. All investigation subsequently has confirmed this original idea. It has been shown that if you take any measures by which other plants of like kind to the torula would be killed, and by which the yeast plant is killed, then the yeast loses its efficiency. But a capital experiment upon this subject was made by a very distinguished man, Helmholz, who performed an experiment of this kind. He had two vessels—one of them we will suppose full of yeast, but over the bottom of it, as this might be, was tied a thin film of bladder; consequently, through that thin film of bladder all the liquid parts of the yeast would go, but the solid parts would be stopped behind; the torula would be stopped, the liquid parts of the yeast would go. And then he took another vessel containing a fermentable solution of sugar, and he put one inside the other; and in this way you see the fluid parts of the yeast were able to pass through with the utmost ease into the sugar, but the solid parts could not get through at all. And he judged thus: if the fluid parts are those which excite fermentation, then, inasmuch as these are stopped, the sugar will not ferment; and the sugar did not ferment, showing quite clearly, that an immediate contact with the solid, living torula was absolutely necessary to excite this process of splitting up of the sugar. This experiment was quite conclusive as to this particular point, and has had very great fruits in other directions.
Well, then, the yeast plant being essential to the production of fermentation, where does the yeast plant come from? Here, again, was another great problem opened up, for, as I said at starting, you have, under ordinary circumstances in warm weather, merely to expose some fluid containing a solution of sugar, or any form of syrup or vegetable juice to the air, in order, after a comparatively short time, to see all these phenomena of fermentation. Of course the first obvious suggestion is, that the torula has been generated within the fluid. In fact, it seems at first quite absurd to entertain any other conviction; but that belief would most assuredly be an erroneous one.
Towards the beginning of this century, in the vigorous times of the old French wars, there was a Monsieur Appert, who had his attention directed to the preservation of things that ordinarily perish, such as meats and vegetables, and in fact he laid the foundation of our modern method of preserving meats; and he found that if he boiled any of these substances and then tied them so as to exclude the air, that they would be preserved for any time. He tried these experiments, particularly with the must of wine and with the wort of beer; and he found that if the wort of beer had been carefully boiled and was stopped in such a way that the air could not get at it, it would never ferment. What was the reason of this? That, again, became the subject of a long string of experiments, with this ultimate result, that if you take precautions to prevent any solid matters from getting into the must of wine or the wort of beer, under these circumstances—that is to say, if the fluid has been boiled and placed in a bottle, and if you stuff the neck of the bottle full of cotton wool, which allows the air to go through and stops anything of a solid character however fine, then you may let it be for ten years and it will not ferment. But if you take that plug out and give the air free access, then, sooner or later fermentation will set up. And there is no doubt whatever that fermentation is excited only by the presence of some torula or other, and that that torula proceeds in our present experience, from pre-existing torulae. These little bodies are excessively light. You can easily imagine what must be the weight of little particles, but slightly heavier than water, and not more than the two-thousandth or perhaps seven-thousandth of an inch in diameter. They are capable of floating about and dancing like motes in the sunbeam; they are carried about by all sorts of currents of air; the great majority of them perish; but one or two, which may chance to enter into a sugary solution, immediately enter into active life, find there the conditions of their nourishment, increase and multiply, and may give rise to any quantity whatever of this substance yeast. And, whatever may be true or not be true about this "spontaneous generation," as it is called in regard to all other kinds of living things, it is perfectly certain, as regards yeast, that it always owes its origin to this process of transportation or inoculation, if you like so to call it, from some other living yeast organism; and so far as yeast is concerned, the doctrine of spontaneous generation is absolutely out of court. And not only so, but the yeast must be alive in order to exert these peculiar properties. If it be crushed, if it be heated so far that its life is destroyed, that peculiar power of fermentation is not excited. Thus we have come to this conclusion, as the result of our inquiry, that the fermentation of sugar, the splitting of the sugar into alcohol and carbonic acid, glycerine, and succinic acid, is the result of nothing but the vital activity of this little fungus, the torula.
And now comes the further exceedingly difficult inquiry—how is it that this plant, the torula, produces this singular operation of the splitting up of the sugar? Fabroni, to whom I referred some time ago, imagined that the effervescence of fermentation was produced in just the same way as the effervescence of a sedlitz powder, that the yeast was a kind of acid, and that the sugar was a combination of carbonic acid and some base to form the alcohol, and that the yeast combined with this substance, and set free the carbonic acid; just as when you add carbonate of soda to acid you turn out the carbonic acid. But of course the discovery of Lavoisier that the carbonic acid and the alcohol taken together are very nearly equal in weight to the sugar, completely upset this hypothesis. Another view was therefore taken by the French chemist, Thenard, and it is still held by a very eminent chemist, M. Pasteur, and their view is this, that the yeast, so to speak, eats a little of the sugar, turns a little of it to its own purposes, and by so doing gives such a shape to the sugar that the rest of it breaks up into carbonic acid and alcohol.