Well, then, there is a third hypothesis, which is maintained by another very distinguished chemist, Liebig, which denies either of the other two, and which declares that the particles of the sugar are, as it were, shaken asunder by the forces at work in the yeast plant. Now I am not going to take you into these refinements of chemical theory, I cannot for a moment pretend to do so, but I may put the case before you by an analogy. Suppose you compare the sugar to a card house, and suppose you compare the yeast to a child coming near the card house, then Fabroni's hypothesis was that the child took half the cards away; Thenard's and Pasteur's hypothesis is that the child pulls out the bottom card and thus makes it tumble to pieces; and Liebig's hypothesis is that the child comes by and shakes the table and tumbles the house down. I appeal to my friend here (Professor Roscoe) whether that is not a fair statement of the case.

Having thus, as far as I can, discussed the general state of the question, it remains only that I should speak of some of those collateral results which have come in a very remarkable way out of the investigation of yeast. I told you that it was very early observed that the yeast plant consisted of a bag made up of the same material as that which composes wood, and of an interior semifluid mass which contains a substance, identical in its composition, in a broad sense, with that which constitutes the flesh of animals. Subsequently, after the structure of the yeast plant had been carefully observed, it was discovered that all plants, high and low, are made up of separate bags or "cells," as they are called; these bags or cells having the composition of the pure matter of wood; having the same composition, broadly speaking, as the sac of the yeast plant, and having in their interior a more or less fluid substance containing a matter of the same nature as the protein substance of the yeast plant. And therefore this remarkable result came out—that however much a plant may differ from an animal, yet that the essential constituent of the contents of these various cells or sacs of which the plant is made up, the nitrogenous protein matter, is the same in the animal as in the plant. And not only was this gradually discovered, but it was found that these semifluid contents of the plant cell had, in many cases, a remarkable power of contractility quite like that of the substance of animals. And about 24 or 25 years ago, namely, about the year 1846, to the best of my recollection, a very eminent German botanist, Hugo Von Mohl, conferred upon this substance which is found in the interior of the plant cell, and which is identical with the matter found in the inside of the yeast cell, and which again contains an animal substance similar to that of which we ourselves are made up—he conferred upon this that title of "protoplasm," which has brought other people a great deal of trouble since! I beg particularly to say that, because I find many people suppose that I was the inventor of that term, whereas it has been in existence for at least twenty-five years. And then other observers, taking the question up, came to this astonishing conclusion (working from this basis of the yeast), that the differences between animals and plants are not so much in the fundamental substances which compose them, not in the protoplasm, but in the manner in which the cells of which their bodies are built up have become modified. There is a sense in which it is true—and the analogy was pointed out very many years ago by some French botanists and chemists—there is a sense in which it is true that every plant is substantially an enormous aggregation of bodies similar to yeast cells, each having to a certain extent its own independent life. And there is a sense in which it is also perfectly true—although it would be impossible for me to give the statement to you with proper qualifications and limitations on an occasion like this—but there is also a sense in which it is true that every animal body is made up of an aggregation of minute particles of protoplasm, comparable each of them to the individual separate yeast plant. And those who are acquainted with the history of the wonderful revolution which has been worked in our whole conception of these matters in the last thirty years, will bear me out in saying that the first germ of them, to a very great extent, was made to grow and fructify by the study of the yeast plant, which presents us with living matter in almost its simplest condition.

Then there is yet one last and most important bearing of this yeast question. There is one direction probably in which the effects of the careful study of the nature of fermentation will yield results more practically valuable to mankind than any other. Let me recall to your minds the fact which I stated at the beginning of this lecture. Suppose that I had here a solution of pure sugar with a little mineral matter in it; and suppose it were possible for me to take upon the point of a needle one single, solitary yeast cell, measuring no more perhaps than the three-thousandth of an inch in diameter—not bigger than one of those little coloured specks of matter in my own blood at this moment, the weight of which it would be difficult to express in the fraction of a grain—and put it into this solution. From that single one, if the solution were kept at a fair temperature in a warm summer's day, there would be generated, in the course of a week, enough torulae to form a scum at the top and to form lees at the bottom, and to change the perfectly tasteless and entirely harmless fluid, syrup, into a solution impregnated with the poisonous gas carbonic acid, impregnated with the poisonous substance alcohol; and that, in virtue of the changes worked upon the sugar by the vital activity of these infinitesimally small plants. Now you see that this is a case of infection. And from the time that the phenomenon of fermentation were first carefully studied, it has constantly been suggested to the minds of thoughtful physicians that there was a something astoundingly similar between this phenomena of the propagation of fermentation by infection and contagion, and the phenomena of the propagation of diseases by infection and contagion. Out of this suggestion has grown that remarkable theory of many diseases which has been called the "germ theory of disease," the idea, in fact, that we owe a great many diseases to particles having a certain life of their own, and which are capable of being transmitted from one living being to another, exactly as the yeast plant is capable of being transmitted from one tumbler of saccharine substance to another. And that is a perfectly tenable hypothesis, one which in the present state of medicine ought to be absolutely exhausted and shown not to be true, until we take to others which have less analogy in their favour. And there are some diseases most assuredly in which it turns out to be perfectly correct. There are some forms of what are called malignant carbuncle which have been shown to be actually effected by a sort of fermentation, if I may use the phrase, by a sort of disturbance and destruction of the fluids of the animal body, set up by minute organisms which are the cause of this destruction and of this disturbance; and only recently the study of the phenomena which accompany vaccination has thrown an immense light in this direction, tending to show by experiments of the same general character as that to which I referred as performed by Helmholz, that there is a most astonishing analogy between the contagion of that healing disease and the contagion of destructive diseases. For it has been made out quite clearly, by investigations carried on in France and in this country, that the only part of the vaccine matter which is contagious, which is capable of carrying on its influence in the organism of the child who is vaccinated, is the solid particles and not the fluid. By experiments of the most ingenious kind, the solid parts have been separated from the fluid parts, and it has then been discovered that you may vaccinate a child as much as you like with the fluid parts, but no effect takes place, though an excessively small portion of the solid particles, the most minute that can be separated, is amply sufficient to give rise to all the phenomena of the cow pock, by a process which we can compare to nothing but the transmission of fermentation from one vessel into another, by the transport to the one of the torula particles which exist in the other. And it has been shown to be true of some of the most destructive diseases which infect animals, such diseases as the sheep pox, such diseases as that most terrible and destructive disorder of horses, glanders, that in these, also, the active power is the living solid particle, and that the inert part is the fluid. However, do not suppose that I am pushing the analogy too far. I do not mean to say that the active, solid parts in these diseased matters are of the same nature as living yeast plants; but, so far as it goes, there is a most surprising analogy between the two; and the value of the analogy is this, that by following it out we may some time or other come to understand how these diseases are propagated, just as we understand, now, about fermentation; and that, in this way, some of the greatest scourges which afflict the human race may be, if not prevented, at least largely alleviated.

This is the conclusion of the statements which I wished to put before you. You see we have not been able to have any accessories. If you will come in such numbers to hear a lecture of this kind, all I can say is, that diagrams cannot be made big enough for you, and that it is not possible to show any experiments illustrative of a lecture on such a subject as I have to deal with. Of course my friends the chemists and physicists are very much better off, because they can not only show you experiments, but you can smell them and hear them! But in my case such aids are not attainable, and therefore I have taken a simple subject and have dealt with it in such a way that I hope you all understand it, at least so far as I have been able to put it before you in words; and having once apprehended such of the ideas and simple facts of the case as it was possible to put before you, you can see for yourselves the great and wonderful issues of such an apparently homely subject.