this peculiar result is quite simple. Every notch winged female has one X chromosome that carries the factor for notch and one X chromosome that is "normal". Daughters receiving the former chromosomes are notched because the factor for notch is dominant, but they are not killed since the lethal effect of the notch factor is recessive to the normal allelomorph carried by the other chromosome that the daughters get from their father. This normal factor is recessive for notch but dominant for life. This same figure (b) is used here to show three other sex linked characters. The spines on the thorax are twisted or kinky, which is due to a factor called "forked". The effect is best seen on the thorax, but all spines on the body are similarly modified; even the minute hairs are also affected. Ruby eye color might be here represented—if the eyes in the figure were colored. The lighter color of the body and antennae is intended to indicate that the character tan is also present. The light color of the antennae is the most certain way of identifying tan. The tan flies are interesting because they have lost the positive heliotropism

that is so marked a feature in the behavior of D. ampelophila. As this peculiarity of the tan flies is inherited like all the other sex linked characters, it follows that when a tan female is bred to a wild male all the sons inherit the recessive tan color and indifference to light, while the daughters show the dominant sex linked character of their father, i.e., they are "gray", and go to the light. Hence when such a brood is disturbed the females fly to the light, but the males remain behind.

One of the first mutants that appeared in D. ampelophila was called rudimentary on account of the condition of the wings (c). The same mutation has appeared independently several times. In the drawing (c) the dark body color is intended to indicate "sable" and the lighter color of the eyes is intended to indicate eosin. This eye color, which is an allelomorph of white, is also interesting because in the female the color is deeper than in the male. In other cases of sex linked factors the character is the same in the two sexes.

In the fourth figure (d) the third and fourth longitudinal veins of the wing are fused into

one vein from the base of the wing to the level of the first cross-vein and in addition converge and meet near their outer ends. The shape of the eye is represented in the figure as different from the normal, due to another factor called "bar". This is a dominant character, the hybrid condition being also narrow, but not so narrow as the pure type. Vermilion eye color might also be here represented—due to a factor that has appeared independently on several occasions.

In the fifth figure (e) the wings are shorter and more pointed than in the wild fly. This character is called miniature. The light color of the drawing may be taken to represent yellow body color, and the light color of the eye white eye color.

In the last figure (f) the wings are represented as pads, essentially in the same condition that they are in when the fly emerges from the pupa case. Not all the flies of this stock have the wings in this condition; some have fully expanded wings that appear normal in all respects. Nevertheless, about the same percentage of offspring show the pads irrespective of

whether the parents had pads or expanded wings.

The flies of this stock show, however, another character, which is a product of the same factor, and which is constant, i.e., repeated in all individuals. The two bristles on the sides of the thorax are constantly absent in this race. The lighter color of the eye in the figure may be taken to indicate buff—a faint yellowish color. The factor for this eye color is another allelomorph of white.

There are many other interesting characters that belong to the first group, such as abnormal abdomen, short legs, duplication of the legs, etc. In fact, any part of the body may be affected by a sex-linked factor.