In the crustacea the appendages have the power to regenerate in all the forms that have been examined.
Several kinds of myriapods, as well as a number of spiders, are known to regenerate their legs. In the insects, however, only a few forms are known to have this power,—caterpillars, mantis, and the cockroach. The large majority of insects, in the imago state, do not seem to be able to regenerate, although in a few cases regeneration has been found to occur.[46]
In the mollusks, regeneration of the head takes place under certain conditions. Spallanzani thought that if the entire head is cut off a new one regenerates. This conclusion was denied by at least eleven of his contemporaries, and confirmed by about ten others. It was found later that the result depends in part on the time of year and in part on the kind of snail. Carrière, who more recently examined the question, found that even under the most favorable conditions regeneration does not take place if the circumœsophageal nerve-commissure is completely removed with the head, but if a part remains, a new head develops. It has been stated that a new foot regenerates in helicarion, and I have found that the foot regenerates also in the fresh-water snails, physa, limnæa, and planorbis. If the margin of the shell of a lamellibranch or of a snail is broken off, it is renewed by the mantle. The arms of some of the cephalopods are known to regenerate, particularly the hectocotylized arm.
In all the main groups of echinoderms, with one possible exception, regeneration has been found to take place. Probably all starfishes and brittle-stars regenerate their arms, and even if cut in two or more pieces, new starfishes develop. The crinoids regenerate lost arms, and even parts of the disk; also the visceral mass. The holothurians have very remarkable powers of regeneration. In some forms regeneration takes place if the animals are cut in two, or even in more than two pieces. The remarkable phenomenon of evisceration that take place in certain holothurians, if they are roughly handled, or kept under unfavorable conditions, are well known and have been described by a number of writers. It has even been suggested that the holothurian may save itself by offering up its viscera to its assailant! Unfortunately for this view, it has been found that the viscera are unpalatable, at least to sea-anemones and to fishes. Ludwig and Minchin suggest that the throwing off of the Cuvierian organs, which are attached to the cloaca, is a defensive act, and if carried too far, according to the latter writer, the viscera may also be lost. The holothurians have remarkable recuperative powers and may regenerate new viscera in a very short time. The sea-urchins form, perhaps, an exception in this group, since there are no records of their regenerative power, but no doubt this is because they have not been as fully investigated as have other forms.
Fig. 39.—A. Amphiuma means with left fore and hind leg regenerating. B. Necturus maculatus with right fore leg beginning to regenerate after eight months. C. Plethedon cinereus. A, B, C. Drawn to same scale.
In the vertebrates the lower forms, amphioxus, petromyzon, and sharks, have not been studied in regard to their regenerative power. In the teleostean fishes the fins of a number of forms are known to regenerate. It is probable that this takes place in most members of the group.
In the amphibia we find a large number of forms that regenerate their limbs and tail, and other parts of the body, but limitations appear in certain forms. The rapid regeneration of the legs in the smaller urodeles has been often described. In larger forms it takes place more slowly, at least in large forms having large legs. In proteus the regeneration may extend over a year and a half, and in necturus it takes more than a year to make a new limb, at least in animals in confinement. In the large form, amphiuma, that has extremely small legs, regeneration takes place much more rapidly than in a form like necturus having much larger legs ([Fig. 39]).
In amphiuma the feet are not used by the animal as organs of locomotion, since they are too small and weak to support the heavy body. They can be moved by the animal in the same way that the feet are moved in other forms, and yet are useless for progression. It is said by Schreiber that the regeneration of the legs of Triton marmoratus is relatively very slight as compared with that of other forms. Fraisse also found in this form that an amputated leg did not grow again, only a deformed stump being produced. The tail also is said to regenerate to only a slight extent, but, so far as I know, there is nothing peculiar in the life of this form that makes it less liable to injury than other large urodeles.[47] Weismann cites the case of proteus, which is said also to regenerate less well than do other forms. It lives in the caves of Carniola, where there are few other animals that could attack or injure it, and to this immunity is ascribed its lack of power of regeneration; yet Goette states that he observed a regenerating leg in this form, but that the process was not complete after a year and a half. In necturus also, which is not protected in any way, regeneration is equally slow. Frogs are unable to regenerate their limbs, although they are sometimes lost, but the larval tadpole can regenerate at least its hind legs. In the lizards the tail regenerates, but at present we do not know of any connection between this condition and the liability of certain forms to injury. Turtles and snakes do not regenerate their tails. I do not know of any observations on crocodiles.