In birds, the legs and wings are not supposed to have the power to regenerate,[48] but in two forms[49] at least the beak has been found to possess remarkable powers of regeneration. There are a few very dubious observations in regard to the regeneration in man of superfluous digits that had been cut off.[50]
These examples might be added to by others in the groups cited, and also by examples taken from the smaller groups of the animal kingdom, but those given will suffice, I think, to show that the power to regenerate is characteristic of entire groups rather than individual species. When exceptions occur, we do not find them to be forms that are obviously protected, but the lack of regeneration can rather be accounted for by some peculiarity in the structure of the animal. If this is borne in mind, as well as the fact that protected and unprotected parts of the same animal regenerate equally well, there is established, I think, a strong case in favor of the view that there is no necessary connection between regeneration and liability to injury. We may therefore leave this side of the question and turn our attention to another consideration.
It will be granted without argument that the power of replacement of lost parts is of use to the animal that possesses it, especially if the animal is liable to injury. Cases of usefulness of this sort are generally spoken of as adaptations. The most remarkable fact in connection with these adaptive responses is that they take place, in some cases at least, in parts of the body where they can never, or at most very rarely, have taken place before, and the regeneration is as perfect as when parts liable to injury regenerate. Another important fact is that in some forms the regeneration is so slow that if the competition amongst the animals was very keen those with missing legs, or eyes, or tails, would certainly succumb; yet, if protected, they do not fail to regenerate. If, therefore, the animal can exist through the long interval that must elapse before the lost part regenerates, we cannot assume that the presence of the part is of vital importance to the animal, and hence its power to regenerate could scarcely be described as the result of a “battle for existence,” and without this principle “natural selection” is powerless to bring about its supposed result.
It is extremely important to observe that some cases, at least, of regeneration are not adaptive. This is shown in the case where a new head regenerates at the posterior end of the old one in Planaria lugubris, or where a tail develops at the anterior end of a posterior piece of an earthworm, or when an antenna develops in place of an eye in several crustacea. If we admit that these results are due to some inner laws of the organism, and have nothing to do with the relation of the organism to its surroundings, may we not apply the same principle to other cases of regeneration in which the result is useful?
So firm a hold has the Darwinian doctrine of utility over the thoughts of those who have been trained in this school, that whenever it can be shown that a structure or a function is useful to an animal, it is without further question set down as the result of the death struggle for existence. A number of writers, being satisfied that the process of regeneration is useful to the animal, have forthwith supposed that, therefore, it must have been acquired by natural selection. Weismann has been cited as an example, but he is by no means alone in maintaining this attitude. It would be entirely out of place to enter here into a discussion of the Darwinian theory, but it may be well worth while to consider it in connection with the problem of regeneration.
We might consider the problem in each species that we find capable of regenerating; or, if we find this too narrow a field for our imagination, we might consider the process of regeneration to have been “acquired by selection in the lower and simpler forms,” and trace its subsequent progress as it decreased in the course of phylogeny “in correspondence with the increase in complexity of organization,” or with the decrease of exposure to injury. At the risk of adopting the narrower point of view I shall confine the discussion to the possibility of regeneration being acquired, or even augmented, through a process of natural selection in any particular species.
The opportunity to regenerate can only occur if a part is removed by accident or otherwise. On the Darwinian theory we must suppose that of all the individuals of each generation that are injured, in exactly the same part of the body, only those have survived or have left more offspring that have regenerated. In order that selection may take place, it must be supposed that amongst these individuals injured in exactly the same region, regeneration has been better in some forms than in others, and that this difference is, or may be, decisive in the competition of the forms with each other. The theory does not inquire into the origin of this difference between individuals, but rests on the assumption of individual differences in the power to regenerate, and assumes that these differences can be heaped up by the survival and inbreeding of the successful individuals; i.e. it is assumed that, by this picking out or selection through competition in each generation of the individuals that regenerate best, the process will become more and more perfectly carried out in the descendants, until at last each part has acquired the power of complete regeneration.
There are so many assumptions in this argument, and so many possibilities that must be realized in order that the result shall follow, that, even if the assumptions were correct, one might still remain sceptical in regard to the possibilities ever becoming realized. If we examine somewhat more in detail the conditions necessary to bring about this supposed process, we shall find ample grounds for doubt, and even, I think, for denial that the results could ever have been brought about in this way.
In the first place, the assumption that the regeneration of an organ can be accounted for as a result of the selection of those individual variations that are somewhat more perfect, rests on the ground that such variations occur, for the injury itself that acts as a stimulus is not supposed to have any direct influence on the result, i.e. for better or worse. All that natural selection pretends to do is to build up the complete power of regeneration by selecting the most successful results in the right direction. In the end this really goes back to the assumption that the tissue in itself has power to regenerate more completely in some individuals than in others. It is just this difference, if it could be shown to exist, that is the scientific problem. But, even leaving this criticism to one side, since it is very generally admitted, it will be clear that in many cases most of the less complete stages of regeneration that are assumed to occur in the phyletic series could be, in each case, of very little use to the individual. It is only the completed organ that can be used; hence the very basis of the argument falls to the ground. The building up of the complete regeneration by slowly acquired steps, that cannot be decisive in the battle for existence, is not a process that can be explained by the theory.
There is another consideration that is equally important. It is assumed that those individuals that regenerate better than those that do not, survive, or at least have more descendants; but it should not be overlooked that the individuals that are not injured (and they will belong to both of the above classes) are in even a better position than are those that have been injured and have only incompletely regenerated. The uninjured forms, even if they did not crowd out the regenerating ones, which they should do on the hypothesis, would still intercross with them, and in so doing bring back to the average the ability of the organism to regenerate. Here we touch upon a fatal objection to the theory of natural selection that Darwin himself came to recognize in the later editions of the Origin of Species, namely, that unless a considerable number of individuals in each generation show the same variation, the result will be lost by the swamping effects of intercrossing. If this be granted, there is left very little for selection to do except to weed out a few unsuccessful competitors, and if the same causes that gave origin to the new variation on a large scale should continue to act, it will by itself bring about the result, and it seems hardly necessary to call in another and questionable hypothesis.