Increasing the temperature of food to achieve preservation also results in destruction of the micro-organisms that produce spoilage and disease. Time and temperature regulate this preservation. Theoretically, since food will be stored at temperatures which will allow most microbes to grow, the ideal heat treatment needed to preserve the food would be one that completely sterilizes the food, that is, kills all attendant micro-organisms. To achieve complete sterilization, for example, every particle of food in a jar must reach the required temperature and be held there long enough to destroy all micro-organisms.

Heat Transfer

The time required for heat to penetrate to the center of the food in a container (the slowest heating point) is extremely important. Heat is transferred through food in containers by two mechanisms: conduction and convection. The mechanism involved depends on the consistency and amount of liquid in the food. The heat penetration rate is also influenced by size of the container, type of heating medium (wet steam vs. dry air), ratio of solid to liquid, kind and size of solid material in container, amount of fat, and amount of salt and sugar.

For example, pumpkin or squash can be home canned in two forms: strained or cubed. University of Minnesota research has shown that the time required for the center of a pint jar of strained squash (which heats by conduction) to reach sterilization temperature is three to four times as long as for a pint jar of cubed squash (which heats by convection). The same is true of creamed corn (heats by conduction) and whole kernel corn (heats by convection).

Methods and recipes recommended by Extension agencies take into account all of these factors and must be followed precisely to assure a safe and wholesome product.

Why is it necessary to heat-process pint jars of string beans at 240° F for 20 minutes in a pressure canner when tomatoes can be successfully heat-processed in a boiling water bath? This brings up the second method of preserving food at home, controlling the food’s acid content. This method is most commonly used in combination with heat processing.

Most foods contain naturally occurring organic acids. Some foods contain more of these acids and are called acid or high acid foods. These organic acids have the ability to limit, inhibit, or prevent the growth of many of the micro-organisms producing spoilage and disease. The degree of inhibition is related to the amount of acid present.

A method used for measuring acid content is called pH. A measure of pH is a determination of the hydrogen ion concentration which reflects the amount of acid or alkali present in the system. A scale from 0 to 14 is used. A pH of 7 is considered neutral, above 7 alkaline, below 7 acidic. Very few foods have a pH above 7.

The classification of foods in the acid range below 7 is extremely important. Above pH 4.6 most of the spoilage type micro-organisms can grow, as well as the dreaded Clostridium botulinum (see discussion following on botulism). In foods with a pH greater than 4.6, it is necessary to heat-process the food at temperatures above boiling to obtain the desired level of sterility.

There are some types of bacteria that produce entities called endospores or spores which are extremely resistant to environmental stresses. They are a means of assuring survival in bacteria, although not themselves a reproductive mechanism. One growing or vegetative cell will produce one spore, which under proper growth conditions will germinate and produce one cell. This one cell continues to grow and can produce millions of bacterial cells. Destruction of the resistant spore necessitates the use of temperatures above that of boiling water (212° F).