Electro-chemical Theories.—The observation was made by Nicholson and Carlisle in 1800 that water was decomposed into its constituent gases by the electric current. Then in 1803 Berzelius and Hisinger found that salts were decomposed into their bases and acids by the same agency, and in 1807 Davy isolated potassium, sodium, and other metals afterwards, by a similar decomposition. Since those early times a vast amount of attention has been paid to the relation of electricity to chemical changes, a relation that is evidently of great importance from the fact that while electric currents decompose chemical compounds, these currents, on the other hand, are produced by chemical reactions.
Berzelius was particularly prominent in this direction, and in 1819 he published an elaborate electro-chemical theory. He believed that atoms were electrically polarized, and that this was the cause of their combination with one another. He extended this idea to groups of atoms, particularly to oxides, and regarded these groups as positive or negative, according to the excess of positive or negative electricity derived from their constituent atoms and remaining free. He thus arrived at his dualistic theory of chemical compounds, which attained great prominence and prevailed for a long time in chemical theory. According to this idea, each compound was supposed to be made up of a positive and a negative atom or group of atoms. For example, the formulas for potassium nitrate, calcium carbonate, and sulphuric acid corresponded to K2O.N2O5, CaO.CO2 and H2O.SO3 where we now write KNO3, CaCO3 and H2SO4, and the theory was extended to embrace organic compounds also.
The eminent English chemist and physicist Faraday announced the important law of electro-chemical equivalents in 1834. This law shows that the quantities of elements set free by the passage of a given quantity of electricity through their solutions correspond to the chemical equivalents of those elements. Faraday made a table of the equivalents of a number of elements, regarding them important in connection with atomic weights, but at that time no sharp distinction was usually made between equivalents and atomic weights, and it was not fully realized that one atom of a given element may be the electrical equivalent of several atoms of another.
Faraday’s law, which is still regarded as fundamentally exact, has been of much practical use in the measurement of electric currents and in calculations connected with electro-chemical processes. In discussing his experiments, Faraday made use of several new terms, such as “electrolyte” for a substance which conducts electricity when in solution, and is thus “electrolyzed,” “electrode,” “anode,” and “cathode,” terms that have come into general use, and finally “ions” for the particles that were supposed to “wander” towards the electrodes to be set free there.
This term “ion” remained in comparative obscurity for more than half a century, when it was brought into great prominence among chemists by Arrhenius in connection with the ionic theory.
Cannizzaro’s Ideas.—Up to about 1869 chaos reigned among the formulas used by different chemists. Various compound radicals and numerous type-formulas were employed, dualistic and unitary formulas of several kinds were in use, but the worst feature of the situation was the fact that more than one system of atomic weights was in vogue, so that water might be written
HO, H̶O, or H20
and similar discrepancies might appear in nearly all formulas containing elements of different valencies. In 1858, however, an article by the Italian chemist Cannizzaro appeared in which the outlines of a course in chemical philosophy were presented. This acquired wide circulation in the form of a pamphlet at a chemical convention somewhat later, and it dealt so clearly and ably with Avogadro’s principle, Dulong and Petit’s law, and other points in connection with formulas that it led to a rapid and almost universal reform among those who were using unsatisfactory formulas.
At about this time also the dualistic formulas of Berzelius were generally abandoned, and hydrogen came to be regarded as the characteristic element of all acids. For instance, CaO.SO3, called “sulphate of lime,” came to be written CaSO4 and was called “calcium sulphate,” and while it had been shown as early as 1815 by Davy that “iodic acid,” I2O5, showed no acid reaction until it was combined with water, the accumulation of similar facts led to the formulation of sulphuric acid as H2SO4 instead of SO3 or H2O.SO3, and that of other “oxygen acids” in a similar way. As a necessary consequence of this view of acids, the bases came to be regarded as compounds of the “hydroxyl” group, OH. Therefore the formula for caustic soda came to be written NaOH instead of Na2O.H2O, and so on.
The Periodic System of the Elements.—The periodicity of the elements in connection with their atomic weights was roughly grasped by Newlands in England, who announced his “law of octaves” in 1863. This was at the time when the atomic weights were being modified and their numerical relations properly shown. The subject was worked out more fully by L. Meyer in Germany a little later, but it was most clearly and elaborately presented by the Russian chemist Mendeléeff in 1869.