In order that this subject may be explained to some extent Mendeléeff’s table is given here, with the addition of the recently discovered elements and some other modifications.

Note.—Distinctions in printing: Gaseous elements. Other non-metallic elements, metallic elements. The heavy line encloses approximately the acid-forming elements.

In this table the elements arranged in the order of their atomic weights fall into eight groups where the known oxides progress regularly, with the exception of two or three elements, from R2O in Group I to R2O7 in Group VII, while in Group VIII two oxides (of ruthenium and osmium) are known which carry the progression to RO4.

It was pointed out by Mendeléeff that, with the exception of series 1 and 2 at the top of the table, the alternate members of the groups show particularly close relationships. These subordinate groups, marked A and B, in most cases show remarkable analogies and gradations in their properties, for example, in the alkali-metals from lithium to cæsium, and in the halogens from fluorine to iodine. The two divisions of a group do not usually show very close relations to each other, except in their valency, and they even display, in several instances, opposite gradations in chemical activity in the order of their atomic weights. For instance, cæsium stands at the electro-positive end, while gold stands at the electro-negative end of its subordinate group. The difference between the two divisions is very great in Groups VI and VII, but it is extreme in Group VIII, where heavy metals are on one side and inactive gases on the other. Many authorities separate these gases into a “Group O” by themselves at the left-hand side of the table, but this does not change their relative positions, and the plan may be objected to on the ground that many vacant places are thus left in the groups VIII and O.

The periodic law has been useful in rectifying certain atomic weights. At the outset Mendeléeff was obliged to change beryllium from 14·5 (assuming Be2O3) to 9 (assuming BeO), and later the atomic weights of indium and uranium were changed to make them fit the system. All of these changes have been confirmed by physical means.

Mendeléeff found a number of vacant places in his table, and was thus able to render further service to chemical science by predicting the properties of undiscovered elements, and his predictions were very closely confirmed by the later discovery of scandium, gallium, and germanium. The table indicates that there are still two undiscovered elements below manganese and probably two more among the rare-earth metals. The interesting observation has just recently been made by Soddy that the products of radioactive disintegration appear to pass in a symmetrical way through positions in the periodic system, giving off a helium molecule at alternate transformations until the place of lead is reached. It appears, therefore, that the five vacant places in the table above bismuth are probably occupied by these evanescent elements, and it is to be noticed that all of the elements that have been placed in this region of high atomic weights are radioactive.

There are some inconsistencies in the periodic system. The increments in the atomic weights are irregular, and there are three cases, argon and potassium, cobalt and nickel, and tellurium and iodine, where a higher atomic weight is placed before a lower one in order to bring these elements into their undoubtedly proper places. There is a peculiarity also in the heavy-metal division of Group VIII, where three similar elements occur in each of three places, and where the usual periodicity appears to be suspended, or nearly so, in comparison with most of the other elements. However, there seems to be a still more remarkable case of this kind in Group III, where fourteen metals of the rare earths have been placed. They are astonishingly similar in their chemical properties, hence it seems necessary to assume that periodicity is suspended here throughout the wide range of atomic weights from 139 to 174, where no elements save these have been found.

Several other interesting features of the table may be pointed out. The chlorides and hydrides, as indicated by the “typical compounds,” show a regular progression in both directions towards Group IV. (Where the type-formulas do not apply, as far as is known, to more than one or two elements, they have been placed in parentheses in the table given here.) It is a striking fact that the acid-forming elements occur together in a definite part of the table, and that the gases and other non-metallic elements, except the inactive gases of Group VIII, occur in the same region.

Atomic Numbers.—As the result of a spectroscopic study of the wave lengths or frequencies of the X-rays produced when cathode rays strike upon anticathodes composed of different elements, Moseley in 1914 discovered that whole numbers in a simple series can be attributed to the atoms. These atomic numbers are: 1 for hydrogen, 2 for helium, 3 for lithium, 4 for beryllium, and so on, in the order in which the elements occur in Mendeléeff’s periodic table, and in the cases of argon and potassium, cobalt and nickel, and tellurium and iodine, they follow the correct chemical order, while the atomic weights do not. They appear to indicate, therefore, an even more fundamental relation between the atoms than that shown by the atomic weights.