No important practical application has been found for any of these earthy oxides, except that about one per cent of cerium oxide is mixed with thorium oxide in incandescent gas-mantles in order to obtain greatly increased luminosity.

The Inactive Gases.—As long ago as 1785, Cavendish, that remarkable Englishman who first weighed the world and first discovered the composition of water, actually obtained a little argon in a pure condition by sparking atmospheric nitrogen with oxygen converting it into nitric acid (another discovery of his) and absorbing the excess of oxygen. The volume of this residual gas as estimated by him corresponds very closely to the volume of argon in the atmosphere, as now known.

It was more than a century later, in 1894, that Rayleigh and Ramsay discovered argon in the air. Lord Rayleigh had found that atmospheric nitrogen was about one-half per cent heavier than chemical nitrogen, a fact which led to the investigation. It was only necessary to repeat Cavendish’s experiment on a large scale, or to absorb oxygen with hot copper and nitrogen with hot magnesium, in order to obtain argon. The gas attracted much attention, both on account of having but a single atom in its molecule, and particularly because it failed to enter into chemical combination of any kind. This gas has been used of late for filling the bulbs of incandescent electric lamps in cases where a gas pressure without chemical action is desired.

In 1890 and 1891, Hillebrand published in the Journal (40, 384, 1890: 42, 390, 1891) a series of analyses of the mineral uraninite and reported in some samples of the mineral as much as 2·5 per cent of an inactive gas. Hillebrand examined the gas spectroscopically but, just missing an important discovery, he detected only the spectrum lines of nitrogen. Ramsay, in searching for argon in some sort of natural combination, and doubtless remembering Hillebrand’s work, heated some cleveite, a variety of uraninite, and obtained, not argon, but a new gas. This gave a yellow spectrum-line corresponding to a line previously observed in the light of the sun’s corona and attributed to an element in the sun called helium. Helium, therefore, in 1895 had been found on the earth. This gas is a constant constituent of uranium minerals, as it is produced by the breaking down of radioactive elements. It has been found in very small quantity in the atmosphere, and is the most difficult of all known gases to liquefy, as its boiling point, as shown by Onnes in 1908, is only 4° above the absolute zero. It has not yet been solidified.

In 1898 Ramsay and Travers, by the use of ingenious methods of fractional distillation and absorption by charcoal, obtained three other much rarer inactive gases from the atmosphere which they called neon, krypton and xenon.

The inactive gases are all colorless, and as they form no chemical compounds they are characterized by their densities, which give their atomic weights, by their boiling points, and by their characteristic Geissler-tube spectra.

The gaseous radium emanation, or niton, belongs also to the inactive group, and it was also collected and studied by Ramsay who was compelled to work with only 0·0001 cc. of it, as the volume obtained by heating radium salts is very small. It is an evanescent element, disappearing within a few days on account of radioactive disintegration. Meanwhile it glows brilliantly when liquefied and cooled to the temperature of liquid air. It has an atomic weight of 222, four units below that of radium, and the difference is considered as due to the loss by radium of an atom of helium in passing into the emanation.

The Radioactive Elements.—The discovery of radium in 1898 by Madame Curie, and the study of that and other radioactive elements has produced a profound effect upon chemical theory. It was found that the two elements of the highest atomic weights, uranium and thorium, are always spontaneously decomposing into other elements at a fixed rate of speed which can be controlled by no artificial means, and that the elements resulting from these decompositions likewise undergo spontaneous changes into still other elements at greatly varying rates of speed, forming in each case a remarkable series of temporary elements. These transformations are accompanied by the emission at enormous velocities of three kinds of rays, one variety of which has been shown to consist of helium atoms. The greater number of the elements formed in these transformations have not as yet been obtained in a pure condition, and they are known only in connection with their radioactivity, volatility, etc.; but radium and niton, two of these products, have been obtained in a pure condition, so that their atomic weights and their places in the periodic system have been fixed.

We owe much of our knowledge of the radioactive transformations to the researches of Rutherford and of Soddy, and of their co-workers, but one of the important products of the transformation of uranium, an element which he called ionium, was characterized by Boltwood of Yale (25, 365, 1908).

Radium and niton, apart from their radioactive properties, resemble barium and the inert gases of the atmosphere, respectively. The rates at which their progenitors produce them, and the rates at which they themselves decompose, bring about a state of equilibrium after a time. Therefore a given amount of uranium, which decomposes exceedingly slowly, can yield even after thousands of years only a very small proportional quantity of undecomposed radium, one-half of which disappears in about 2500 years, because the amount decomposed must eventually be equal to the amount produced. The first conclusive evidence that radium is a product of the decomposition of uranium was given by Boltwood in the Journal (18, 97, 1904). He found that all uranium minerals contain radium; and the amount of radium present is always proportional to the amount of uranium, which shows the genetic relation between the two.