In the case of niton, which is produced by radium, and is called also the radium emanation, the rate of decay is rapid, so that if the gas is expelled from radium by heating, equilibrium is reached after a few days, with the accumulation of the largest possible amount of niton.
The conclusion has been reached by Rutherford and others that the final product besides helium, in the radioactive transformations, is lead, or at least an element or elements resembling lead to such a degree that no separation of them by chemical means is possible. Atomic weight determinations by Richards and others have shown that specimens of lead found in radioactive minerals give distinctly different atomic weights from that of ordinary lead. This fact has led to the view that possibly the atoms of the elements are not all of the same weight, but vary within certain limits—a view that is contrary to previous conclusions derived from the uniformity in atomic weights obtained with material from many different sources.
The results of the investigations upon radioactivity have led to modified views in regard to the stability of the elements in general. There has been little or no proof obtained that any artificial transmutation of the elements is possible, but the spontaneous transformation of the radioactive elements brings forward the possibility that other elements are changing imperceptibly, and that a state of evolution exists among them. All of the radioactive changes that we know proceed from higher to lower atomic weights, and we are entirely ignorant of the process by which uranium and thorium must have been produced originally.
Since radioactive changes have been found to be accompanied by the release of vast amounts of energy, compared with which the energy of chemical reactions is trivial, a new aspect in regard to the structure of atoms has arisen,—they must be complex in structure, the seats of enormous energy.
The determination of the amount of radium in the earth’s crust has indicated that the heat produced by it is amply sufficient to supply the loss of heat due to radiation, and this source of heat is regarded by many as the cause of volcanic action. The sun’s radiant heat also has been supposed to be supplied by radioactive action, so that the older views regarding the limitation of the age of the earth and the solar system on account of loss of heat have been considerably modified by our knowledge of radioactivity.
Physical Chemistry.
The application of physical methods as aids to chemical science began in early times, and some of these, such as the determinations of gas and vapor densities, specific heats, and crystalline forms have been mentioned already in this article. Within recent times physical chemistry has greatly developed and a few of its important achievements will now be described.
Molecular Weight Determinations.—Gas and vapor densities in connection with Avogadro’s principle, formed the only basis for molecular weight determinations until comparatively recent times. The early methods of Gay-Lussac and Dumas for vapor density were supplemented in 1868 by the method of Hofmann, whereby vapors were measured under diminished pressure over mercury. In 1878 Victor Meyer introduced a simpler method depending upon the displacement of air or other gas by the vapor in a heated tube. As refractory tubes, such as those of porcelain or even iridium, could be used in this method, molecular weights at extremely high temperatures were determined with interesting results. For instance, it was found that iodine vapor, which shows the molecule I2 at lower temperatures, gradually becomes monatomic with rise in temperature, that sulphur vapor dissociates from S8 to S2 under similar conditions, and that most of the metals, including silver, have monatomic vapors.
In 1883 and later it was pointed out by Raoult that the molecular weights of substances could be found from the freezing points of their solutions, but this method was complicated from the fact that salts, strong acids and strong bases behaved quite differently from other substances in this respect, and allowances had to be made for the types of substances used. The complication was afterwards explained by the ionization theory of Arrhenius. Better apparatus for this method was soon devised by Beckmann, who introduced also a method depending upon the boiling points of solutions, and these two methods are still the standard ones for determining molecular weights in solution. They are very extensively employed by organic chemists.
It has been found that the majority of substances when dissolved have the same molecular weight as in the gaseous condition, provided that they can be volatilized at comparable temperatures. For instance, sulphur in solution has the formula S8, iodine is I2 and the metals are monatomic.