He considers that all bodies exist in an electrical or magnetical condition, that we are only a temporary aggregation of molecules of matter governed in different ways by nature’s laws, and that excitability is produced by galvanic action resulting from the superposition of nervous and muscular fibres.

He is also the author of very interesting treatises on animal electricity communicated to the Journal de Physique (Vol. XLII. pp. 252, 255, 292), and of which an account is given in Sue’s “Histoire du Galvanisme,” Paris, 1802, Vol. I. pp. 64–68. The last-named work also gives, at p. 80, an account of the letter on “Galvanism” sent to M. De La Méthérie by M. Leopold Vacca-Berlinghieri (Journal de Physique, Vol. XLI. p. 314).

References.—“Biographie Générale,” Vol. XXIX. p. 209; Rozier, XLI. p. 437; Delaunay, “Manuel,” etc., 1809, p. 15, also Delaunay’s letter in Phil. Mag., Vol. XXVII. p. 260; C. H. Wilkinson, “Elements of Galvanism,” London, 1804, Vol. I. p. 62; Vol. II. p. 9; “Opus. Scelti,” XXI. p. 373; Journal de Physique et Chimie (of which La Méthérie remained editor up to the time of his death, during 1817), Vols. LIII, LIV, Pluviose, An. XI. p. 161; also p. 157 for letter sent him by Giuseppe Izarn; Ann. di Chim. di Brugnatelli, Vol. XIX. p. 156; Aubert, “Elektrometische Flasche,” Paris, 1789.

A.D. 1785.—According to Prof. Tyndall, George Cadogan Morgan sought to produce the electric spark in the interior of solid bodies. He inserted two wires into wood and caused the spark to pass between them; the wood was illuminated with blood-red light or with yellow light according as the depth at which the spark was produced proved greater or less. The spark shown within an ivory ball, an orange, an apple, or under the thumb, illuminates these bodies throughout. A lemon is especially suited to this experiment, flashing forth, at every spark, as a spheroid of very brilliant golden light, and a row of eggs is also brilliantly illuminated throughout, at the passage of every spark from a Leyden jar. Morgan likewise made several experiments to ascertain the influence of electricity on the animal functions. These are alluded to at p. 602, Vol. VIII of the 1855 “Britannica,” and at p. 49 of “Electricity” in the “Library of Useful Knowledge.”

This George Cadogan Morgan (1754–1798) was an English physician and also a Professor of Natural Philosophy at Hackney, in an establishment founded by his uncle, Dr. Price. His “Lectures on Electricity” appeared in Norwich during the year 1794. In the second volume he describes (pp. 225–236) “the form, noise, colours and devastation of the electric flash,” and treats (pp. 383–397) of the “relation of the electric fluid to vegetation,” alluding more particularly to the experiments of Maimbray, Nollet, Achard, Duvernier, Ingen-housz, Van Breda, Dr. Carmoy and the Abbé d’Ormoy. He likewise gives an account of the northern lights, as well as descriptions of Bennet’s movable doubler and electroscope, and of Lane’s electrometer.

References.—Morgan’s biography in Larousse, “Dict. Universel,” Tome XI. p. 562, and in “Biog. Générale,” Tome XXXVI. p. 570; “Bibl. Britan.” An. VII. vol. ii. pp. 129, 223, and Vol. XII. p. 3.

A.D. 1786.—Rittenhouse (David), an American physicist and astronomer who afterward became F.R.S. and succeeded Dr. Franklin as President of the Am. Philos. Soc., publishes his theory of magnetism in a letter to John Page at Williamsburg, which is reproduced at folio 178 of Vol. II, old series, of the Transactions of the above-named Society.

“Were we called upon,” says Renwick, “to assign him a rank among the philosophers whom America has produced, we should place him, in point of scientific merit, as second to Franklin alone.”

References.—“Trans. Am. Phil. Soc.,” Vol. II, O.S., pp. 173, 175, for Page and Rittenhouse, and Vol. III. for Rittenhouse and Jones, as well as Rittenhouse and Hopkinson, upon “Meteors and Lightning.”

A.D. 1786.—Galvani (Aloysio or Luigi), an Italian physician, who, at the age of twenty-five, was Professor of Anatomy at the University of Bologna, is led to the discovery of that important branch of electricity which bears his name. The manuscript giving the result of his experiments upon the Electricity of Metals is dated Sept. 20, 1786.