The machine-like accuracy of many of the frog's actions gives a basis for the belief that the animal is merely an automaton. Certain it is that one is safe in calling almost all the frog's actions reflex or instinctive. During months of study of the reaction-time of the frog I was constantly impressed with the uniformity of action and surprised at the absence of evidences of profiting by experience. In order to supplement the casual observations on the associations of the green frog made in the course of reaction-time experiments, the tests described in this paper were made. They do not give a complete view of the associative processes, but rather such a glimpse as will enable us to form some conception of the relation of the mental life of the frog to that of other animals. This paper presents the outlines of work the details of which I hope to give later.
II. EXPERIMENTAL STUDY OF HABITS.
A. The Chief Problems for which solutions were sought in the following experimental study were: (1) Those of associability in general, its characteristics, and the rapidity of learning; (2) of discrimination, including the parts played in associative processes by the different senses, and the delicacy of discrimination in each; (3) of the modifiability of associational reactions and general adaptation in the frog, and (4) of the permanency of associations.
B. Simple Associations, as studied in connection with reaction-time work, show that the green frog profits by experience very slowly as compared with most vertebrates. The animals have individual peculiarities in reaction which enable one in a short time to recognize any individual. To these characteristic peculiarities they stick tenaciously. One, for instance, always jumps upward when strongly stimulated; another has a certain corner of the tank in which it prefers to sit. Their habits are remarkably strong and invariable, and new ones are slowly formed. While using a large reaction box I noticed that the frogs, after having once escaped from an opening which could be made by pushing aside a curtain at a certain point in the box, tended to return to that place as soon as they were again put into the box. This appeared to be evidence of an association; but the fact that such stimuli as light and the relation of the opening to the place at which the animals were put into the box might in themselves be sufficient to direct the animals to this point without the help of any associations which had resulted from previous experience, makes it unsatisfactory. In addition to the possibility of the action being due to specific sensory stimuli of inherent directive value, there is the chance of its being nothing more than the well-known phenomenon of repetition. Frogs, for some reason, tend to repeat any action which has not proved harmful or unpleasant.
For the purpose of more carefully testing this kind of association, a small box with an opening 15 cm. by 10 cm. was arranged so that the animal could escape from confinement in it through the upper part of the opening, the lower portion being closed by a plate of glass 10 cm. by 10 cm., leaving a space 5 cm. by 10 cm. at the top. One subject placed in this box escaped in 5 minutes 42 seconds. After 5 minutes' rest it was given another trial, and this time got out in 2 minutes 40 seconds. The times for a few subsequent trials were: Third, 1 minute 22 seconds; fourth, 4 minutes 35 seconds; fifth, 2 minutes 38 seconds; sixth, 3 minutes 16 seconds. Although this seems to indicate some improvement, later experiments served to prove that the frogs did not readily form any associations which helped them to escape. They tended to jump toward the opening because it was light, but they did not learn with twenty or thirty experiences that there was a glass at the bottom to be avoided. Thinking that there might be an insufficient motive for escape to effect the formation of an association, I tried stimulating the subject with a stick as soon as it was placed in the box. This frightened it and caused violent struggles to escape, but instead of shortening the time required for escape it greatly lengthened it. Here was a case in which the formation of an association between the appearance of the upper part of the clear space and the satisfaction of escape from danger would have been of value to the frog, yet there was no evidence of adaptation to the new conditions within a reasonably short time. There can be little doubt that continuation of the training would have served to establish the habit. This very clearly shows the slowness of adaptation in the frog, in contrast with the rapidity of habit formation in the cat or chick; and at the same time it lends additional weight to the statement that instinctive actions are all-important in the frog's life. A few things it is able to do with extreme accuracy and rapidity, but to this list new reactions are not readily added. When put within the box described, an animal after having once escaped would sometimes make for the opening as if it knew perfectly the meaning of the whole situation, and yet the very next trial it would wander about for half an hour vainly struggling to escape.
A considerable number of simple experiments of this kind were tried with results similar to those just given. The frog apparently examines its surroundings carefully, and just when the observer thinks it has made itself familiar with the situation it reacts in such a way as to prove beyond doubt the absence of all adaptation. In all these experiments it should be said, for the benefit of any who may be trying similar work, that only animals of exceptional activity were used. Most green frogs when placed in the experiment box either sit still a great part of the time or jump about for only a short time. It is very important for studies of this kind, both on account of time saving and the obtaining of satisfactory records, to have animals which are full of energy and eager to escape when in confinement. By choosing such subjects one may pretty certainly avoid all unhealthy individuals, and this, it seems to me, counterbalances the disadvantage of taking animals which may be unusually quick in learning.
C. Complex Associations.
1. Labyrinth Habits.—A more thorough investigation of the associative processes, sensory discrimination and the permanency of impressions has been made by the labyrinth method. A wooden box, 72 cm. long, 28 cm. wide and 28 cm. deep, whose ground plan is represented by Fig. 1, served as the framework for a simple labyrinth. At one end was a small covered box, A, from which the frog was allowed to enter the labyrinth. This entrance passage was used in order that the animal might not be directed to either side by the disturbance caused by placing it in the box. E, the entrance, marks a point at which a choice of directions was necessary. P is a movable partition which could be used to close either the right or the left passage. In the figure the right is closed, and in this case if the animal went to the right it had to turn back and take the left passage in order to get out of the box. A series of interrupted electrical circuits, IC, covered the bottom of a portion of the labyrinth; by closing the key, K, the circuit could be made whenever a frog rested upon any two wires of the series. When the frog happened to get into the wrong passage the key was closed and the animal stimulated. This facilitated the experiment by forcing the animal to seek some other way of escape, and it also furnished material for an association. Having passed through the first open passage, which for convenience we may know as the entrance passage, the animal had to choose again at the exit. Here one of the passages was closed by a plate of glass (in the figure the left) and the other opened into a tank containing water. The box was symmetrical and the two sides were in all respects the same except for the following variable conditions. At the entrance the partition on one side changed the appearance, as it was a piece of board which cut off the light. On either side of the entrance there were grooves for holding card-boards of any desired color. The letters R, R mark sides which in this case were covered with red; W, W mark white spaces. These pieces of cardboard could easily be removed or shifted at any time. At the exit the glass plate alone distinguished the sides, and it is not likely that the animals were able to see it clearly. We have thus at the entrance widely differing appearances on the two sides, and at the exit similarity. The opening from A into the large box was provided with a slide door so that the animal could be prevented from returning to A after entering the labyrinth. The partitions and the triangular division at the entrance extended to the top of the box, 28 cm., so that the animals could not readily jump over them.
Fig. 1. Ground Plan of Labyrinth. A, small box opening into labyrinth; E, entrance of labyrinth; T, tank containing water; G, glass plate closing one passage of exit; P, partition closing one passage at entrance; IC, interrupted electrical circuit; C, cells; K, key in circuit; RR, red cardboard; WW, white cardboard. Scale 1/12.