This area of overlapping may itself be accounted a band, since here the pendulum hides partly red and partly green, and obviously the result for sensation will not be the same as for those areas where red or green alone is hidden. We may call the overlapped area a 'transition-band,' and we must then ask if it corresponds to the 'transition-bands' spoken of in the observations.
Now the formula obtained for Z includes two such transition-bands, one generated in the vicinity of OB and one near OA'. To find the formula for a band produced while the pendulum conceals solely one, the oppositely colored sector (we may call this a 'pure-color' band and let its width = W), we must find the formula for the width (w) of a transition-band, multiply it by two, and subtract the product from the value for Z already found.
The formula for an overlapping or transition-band can be readily found by considering it to be a band formed by the passage behind P of a sector whose width is zero. Thus if, in the expression for Z already found, we substitute zero for s, we shall get w; that is,
| w = | o + pr' | = | pr' |
| r' - r | r' - r |
Since
W = Z - 2w,
we have
| W = | rs + pr' | = 2 | pr' | , |
| r' - r | r' - r |
or
| W = | rs - pr'(1) |
| r' - r |