Similarly

BB' = BA' + A'B' = Z + s.

Substituting for CA' and BB' their values, we get

r'(Z-p) = r(Z+s),

or

Z(r' - r) = rs + pr',

or

Z = rs + pr'
r' - r .

It is to be remembered that s is the width of the sector which undergoes eclipse, and that it is the color of that same sector which is subtracted from the band Z in question. Therefore, whether Z represents a green or a red band, s of the formula must refer to the oppositely colored sector, i.e., the one which is at that time being hidden.

We have now to take cognizance of an item thus far neglected. When the green sector has reached the position A'B', that is, is just emerging wholly from behind the pendulum, the front of the red sector must already be in eclipse. The generation of a green band (red sector in eclipse) will have commenced somewhat before the generation of the red band (green sector in eclipse) has ended. For a moment the pendulum will lie over parts of both sectors, and while the red band ends at point A', the green band will have already commenced at a point somewhat to the left (and, indeed, to the left by a trifle more than the width of the pendulum). In other words, the two bands overlap.