Taking his stand upon this endorsement, Mr. Field now addressed himself to the task of raising the large sum needed to make and lay a new cable which should be so much better than the old ones as to reward its owners with triumph. He found his English friends willing to venture the capital required, and without further delay the manufacture of a new cable was taken in hand. In every detail the recommendations of the Scientific Committee were carried out to the letter, so that the cable of 1865 was incomparably superior to that of 1858. First, the central copper wire, which was the nerve along which the lightning was to run, was nearly three times larger than before. The old conductor was a strand consisting of seven fine wires, six laid around one, and weighed but 107 pounds to the mile. The new was composed of the same number of wires, but weighed 300 pounds to the mile. It was made of the finest copper obtainable.

To secure insulation, this conductor was first embedded in Chatterton's compound, a preparation impervious to water, and then covered with four layers of gutta-percha, which were laid on alternately with four thin layers of Chatterton's compound. The old cable had but three coatings of gutta-percha, with nothing between. Its entire insulation weighed but 261 pounds to the mile, while that of the new weighed 400 pounds.[1] The exterior wires, ten in number, were of Bessemer steel, each separately wound in pitch-soaked hemp yarn, the shore ends specially protected by thirty-six wires girdling the whole. Here was a combination of the tenacity of steel with much of the flexibility of rope. The insulation of the copper was so excellent as to exceed by a hundredfold that of the core of 1858—which, faulty though it was, had, nevertheless, sufficed for signals. So much inconvenience and risk had been encountered in dividing the task of cable-laying between two ships that this time it was decided to charter a single vessel, the Great Eastern, which, fortunately, was large enough to accommodate the cable in an unbroken length. Foilhommerum Bay, about six miles from Valentia, was selected as the new Irish terminus by the company. Although the most anxious care was exercised in every detail, yet, when 1,186 miles had been laid, the cable parted in 11,000 feet of water, and although thrice it was grappled and brought toward the surface, thrice it slipped off the grappling hooks and escaped to the ocean floor. Mr. Field was obliged to return to England and face as best he might the men whose capital lay at the bottom of the sea—perchance as worthless as so much Atlantic ooze. With heroic persistence he argued that all difficulties would yield to a renewed attack. There must be redoubled precautions and vigilance never for a moment relaxed. Everything that deep-sea telegraphy has since accomplished was at that moment daylight clear to his prophetic view. Never has there been a more signal example of the power of enthusiasm to stir cold-blooded men of business; never has there been a more striking illustration of how much science may depend for success upon the intelligence and the courage of capital. Electricians might have gone on perfecting exquisite apparatus for ocean telegraphy, or indicated the weak points in the comparatively rude machinery which made and laid the cable, yet their exertions would have been wasted if men of wealth had not responded to Mr. Field's renewed appeal for help. Thrice these men had invested largely, and thrice disaster had pursued their ventures; nevertheless they had faith surviving all misfortunes for a fourth attempt.

In 1866 a new company was organized, for two objects: first, to recover the cable lost the previous year and complete it to the American shore; second, to lay another beside it in a parallel course. The Great Eastern was again put in commission, and remodelled in accordance with the experience of her preceding voyage. This time the exterior wires of the cable were of galvanized iron, the better to resist corrosion. The paying-out machinery was reconstructed and greatly improved. On July 13, 1866, the huge steamer began running out her cable twenty-five miles north of the line struck out during the expedition of 1865; she arrived without mishap in Newfoundland on July 27, and electrical communication was re-established between America and Europe. The steamer now returned to the spot where she had lost the cable a few months before; after eighteen days' search it was brought to the deck in good order. Union was effected with the cable stowed in the tanks below, and the prow of the vessel was once more turned to Newfoundland. On September 8th this second cable was safely landed at Trinity Bay. Misfortunes now were at an end; the courage of Mr. Field knew victory at last; the highest honors of two continents were showered upon him.

'Tis not the grapes of Canaan that repay,
But the high faith that failed not by the way.

Fig. 59.—Commercial cable, 1894

What at first was as much a daring adventure as a business enterprise has now taken its place as a task no more out of the common than building a steamship, or rearing a cantilever bridge. Given its price, which will include too moderate a profit to betray any expectation of failure, and a responsible firm will contract to lay a cable across the Pacific itself. In the Atlantic lines the uniformly low temperature of the ocean floor (about 4° C.), and the great pressure of the superincumbent sea, co-operate in effecting an enormous enhancement both in the insulation and in the carrying capacity of the wire. As an example of recent work in ocean telegraphy let us glance at the cable laid in 1894, by the Commercial Cable Company of New York. It unites Cape Canso, on the northeastern coast of Nova Scotia, to Waterville, on the southwestern coast of Ireland. The central portion of this cable much resembles that of its predecessor in 1866. Its exterior armour of steel wires is much more elaborate. The first part of [Fig. 59] shows the details of manufacture: the central copper core is covered with gutta-percha, then with jute, upon which the steel wires are spirally wound, followed by a strong outer covering. For the greatest depths at sea, type A is employed for a total length of 1,420 miles; the diameter of this part of the cable is seven-eighths of an inch. As the water lessens in depth the sheathing increases in size until the diameter of the cable becomes one and one-sixteenth inches for 152 miles, as type B. The cable now undergoes a third enlargement, and then its fourth and last proportions are presented as it touches the shore, for a distance of one and three-quarter miles, where type C has a diameter of two and one-half inches. The weights of material used in this cable are: copper wire, 495 tons; gutta-percha, 315 tons; jute yarn, 575 tons; steel wire, 3,000 tons; compound and tar, 1,075 tons; total, 5,460 tons. The telegraph-ship Faraday, specially designed for cable-laying, accomplished the work without mishap.

Electrical science owes much to the Atlantic cables, in particular to the first of them. At the very beginning it banished the idea that electricity as it passes through metallic conductors has anything like its velocity through free space. It was soon found, as Professor Mendenhall says, “that it is no more correct to assign a definite velocity to electricity than to a river. As the rate of flow of a river is determined by the character of its bed, its gradient, and other circumstances, so the velocity of an electric current is found to depend on the conditions under which the flow takes place.”[2] Mile for mile the original Atlantic cable had twenty times the retarding effect of a good aerial line; the best recent cables reduce this figure by nearly one-half.

In an extreme form, this slowing down reminds us of the obstruction of light as it enters the atmosphere of the earth, of the further impediment which the rays encounter if they pass from the air into the sea. In the main the causes which hinder a pulse committed to a cable are two: induction, and the electrostatic capacity of the wire, that is, the capacity of the wire to take up a charge of its own, just as if it were the metal of a Leyden jar.