Let us first consider induction. As a current takes its way through the copper core it induces in its surroundings a second and opposing current. For this the remedy is one too costly to be applied. Were a cable manufactured in a double line, as in the best telephonic circuits, induction, with its retarding and quenching effects, would be neutralized. Here the steel wire armour which encircles the cable plays an unwelcome part. Induction is always proportioned to the conductivity of the mass in which it appears; as steel is an excellent conductor, the armour of an ocean cable, close as it is to the copper core, has induced in it a current much stronger, and therefore more retarding, than if the steel wire were absent.

A word now as to the second difficulty in working beneath the sea—that due to the absorbing power of the line itself. An Atlantic cable, like any other extended conductor, is virtually a long, cylindrical Leyden jar, the copper wire forming the inner coat, and its surroundings the outer coat. Before a signal can be received at the distant terminus the wire must first be charged. The effect is somewhat like transmitting a signal through water which fills a rubber tube; first of all the tube is distended, and its compression, or secondary effect, really transmits the impulse. A remedy for this is a condenser formed of alternate sheets of tin-foil and mica, C, connected with the battery, B, so as to balance the electric charge of the cable wire ([Fig. 60]). In the first Atlantic line an impulse demanded one-seventh of a second for its journey. This was reduced when Mr. Whitehouse made the capital discovery that the speed of a signal is increased threefold when the wire is alternately connected with the zinc and copper poles of the battery. Sir William Thomson ascertained that these successive pulses are most effective when of proportioned lengths. He accordingly devised an automatic transmitter which draws a duly perforated slip of paper under a metallic spring connected with the cable. To-day 250 to 300 letters are sent per minute instead of fifteen, as at first.

Fig. 60.—Condenser

In many ways a deep-sea cable exaggerates in an instructive manner the phenomena of telegraphy over long aerial lines. The two ends of a cable may be in regions of widely diverse electrical potential, or pressure, just as the readings of the barometer at these two places may differ much. If a copper wire were allowed to offer itself as a gateless conductor it would equalize these variations of potential with serious injury to itself. Accordingly the rule is adopted of working the cable not directly, as if it were a land line, but indirectly through condensers. As the throb sent through such apparatus is but momentary, the cable is in no risk from the strong currents which would course through it if it were permitted to be an open channel.

Fig. 61.—Reflecting galvanometer
L, lamp; N, moving spot of light reflected from mirror

A serious error in working the first cables was in supposing that they required strong currents as in land lines of considerable length. The very reverse is the fact. Mr. Charles Bright, in Submarine Telegraphs, says: