| Venus' Fly Trap—Open with a Welcome | Shut for Slaughter |
In marshy places near the mouth of the Cape Fear River, in the vicinity of Wilmington, North Carolina, grows the Venus' fly-trap, most wonderful of all the death-dealers of vegetation. Like much else in nature's handiwork this plant might well have given inventors a hint worth taking. The hairy fringes of its leaves are as responsive to a touch from moth or fly as the sensitive plant itself. And he must be either a very small or a particularly sturdy little captive that can escape through the sharp opposed teeth of its formidable snare. It is one of the unexplained puzzles of plant life that the Venus' fly-trap, so marvellous in its ingenuity, should not only be confined to a single district, but should seem to be losing its hold of even that small kingdom. Of still another type is the pitcher plant, or side-saddle flower, which flaunts its deep purple petals in June in many a peat-bog from Canada southward to Louisiana and Florida. Its leaves develop themselves into lidded cups, half-filled with sweetish juice, which first lures a fly or ant, then makes him tipsy, and then despatches him. The broth resulting is both meat and drink to the plant, serving as a store and reservoir against times of drought and scarcity.
Now the question is, How came about this strange and somewhat horrid means of livelihood? How did plants of so diverse families turn the tables on the insect world, and learn to eat instead of being themselves devoured? A beginner in the builder's art finds it much more gainful to examine the masonry of foundations, the rearing of walls, the placing of girders and joists, the springing of arches and buttresses, than to look at a cathedral, a courthouse, or a bank, finished and in service. In like manner a student of insect-eating plants tries to find their leaves in the making, in all the various stages which bridge their common forms with the shapes they assume when fully armed and busy. Availing himself of the relapses into old habits which plants occasionally exhibit under cultivation, Mr. Dickson has taught us much regarding the way the pitcher plant of Australia, the Cephalotus, has come to be what it is. He has arranged in a connected series all the forms of its leaf from that of a normal leaf with a mere dimple in it, to the deeply pouched and lidded pitcher ready for deceitful hospitalities. And similar transformations have without doubt taken place in the pitcher plants of America. Observers in the Cape of Good Hope have noted two plants Roridula dentata and Biblys gigantea, which are evidently following in the footsteps of the sundews, and may be expected in the fulness of years to be their equal partners in crime. But why need we wander so far as South Africa to find the germs of this strange rapacity when we can see at home a full dozen species of catch-fly, sedums, primulas, and geraniums pouring out glutinous juices in which insects are entangled? Let stress of hunger, long continued, force any of these to turn its attention to the dietary thus proffered, and how soon might not the plant find in felony the sustenance refused to honest toil?
But after all the plants that have meat for dinner are only a few. The greater part of the vegetable kingdom draws its supplies from the air and the soil. Those plants, and they are many, that derive their chief nourishment from the atmosphere have a decidedly thin diet. Which of us would thrive on milk at the rate of a pint to five hogsheads of water? Such is the proportion in which air contains carbonic acid gas, the main source of strength for many thousands of trees, shrubs, and other plants. No wonder that they array themselves in so broad an expanse of leafage. An elm with a spread of seventy feet is swaying in the summer breeze at least five acres of foliage as its lungs and stomach. Beyond the shade of elms and maples let us stroll past yonder stretch of pasture and we shall notice how the grass in patches here and there deepens into green of the richest—a plain token of moisture in the hollows—a blessing indeed in this dry weather. In the far West and Northwest the buffalo grass has often to contend with drought for months together, so that it has learned to strike deep in quest of water to quench its thirst. It is a by-word among the ranchmen that the roots go clear through the earth and are clinched as they sprout from the ground in China. Joking apart, they have been found sixty-eight feet below the surface of the prairie, and often in especially dry seasons cattle would perish were not these faithful little well-diggers and pumpers constantly at work for them. In the river valleys of Arizona although the air is dry the subsoil water is near the surface of the ground. Here flourishes the mesquit tree, Prosopis juliflora, with a tale to tell well worth knowing. When a mesquit seems stunted, it is because its strength is withdrawn for the task of delving to find water; where a tree grows tall with goodly branches, it betokens success in reaching moisture close at hand. Thus in shrewdly reading the landscape a prospector can choose the spot where with least trouble he can sink his well. And plants discover provender in the soil as well as drink. Nearer home than Arizona we have only to dislodge a beach pea from the ground to see how far in search of food its roots have dug amid barren stones and pebbles. Often one finds a plant hardly a foot high with roots extending eight feet from its stem.
And beyond the beaches where the beach peas dig so diligently are the seaweeds—with a talent for picking and choosing all their own. Dr. Julius Sachs, a leading German botanist, believes that the parts of plants owe their form, as crystals do, to their peculiarities of substance; that just as salt crystallizes in one shape and sugar in another, so a seaweed or a tulip is moulded by the character of its juices. Something certainly of the crystal's faculty for picking out particles akin to itself, and building with them, is shown by the kelp which attracts from the ocean both iodine and bromine—often dissolved though they are in a million times their bulk of sea water. This trait of choosing this or that dish from the feast afforded by sea or soil or air is not peculiar to the seaweeds; every plant displays it. Beech trees love to grow on limestone and thus declare to the explorer the limestone ridge he seeks. In the Horn silver mine, of Utah, the zinc mingled with the silver ore is betrayed by the abundance of the zinc violet, a delicate and beautiful cousin of the pansy. In Germany this little flower is admittedly a signal of zinc in the earth, and zinc is found in its juices. The late Mr. William Dorn, of South Carolina, had faith in a bush, of unrecorded name, as betokening gold-bearing veins beneath it. That his faith was not without foundation is proved by the large fortune he won as a gold miner in the Blue Ridge country—his guide the bush aforesaid. Mr. Rossiter W. Raymond, the eminent mining engineer of New York, has given some attention to this matter of “indicative plants.” He is of the opinion that its unwritten lore among practical miners, prospectors, hunters, and Indians is well worth sifting. Their observations, often faulty, may occasionally be sound and valuable enough richly to repay the trouble of separating truth from error. When we see how important as signs of water many plants can be, why may we not find other plants denoting the minerals which they especially relish as food or condiment?
Of more account than gold or silver are the harvests of wheat and corn that ripen in our fields. There the special appetites of plants have much more than merely curious interest for the farmer. He knows full well that his land is but a larder which serves him best when not part but all its stores are in demand. Hence his crop “rotation,” his succession of wheat to clover, of grass to both. Were he to grow barley every year he would soon find his soil bared of all the food that barley asks, while fare for peas or clover stood scarcely broached. If he insists on planting barley always, then he must perforce restore to the land the food for barley constantly withdrawn.
Maple Seed, with pair of wings
A plant may diligently find food and drink, pour forth delicious nectar, array itself with flowers as gayly as it can, and still behold its work unfinished. Its seed may be produced in plenty, and although as far as that goes it is well, it is not enough. Of what avail is all this seed if it falls as it ripens upon soil already overcrowded with its kind? Hence the vigorous emigration policy to be observed in plants of every name. Hence the fluffy sails set to catch the passing breeze by the dandelion, the thistle and by many more, including the southern plant of snowy wealth whose wings are cotton. With the same intent of seeking new fields are the hooks of the burdock, the unicorn plant, and the bur-parsley which impress as carriers the sheep and cattle upon a thousand hills. The Touch-me-not and the herb Robert adopt a different plan, and convert their seed-cases into pistols for the firing of seeds at as wide range as twenty feet or more. The maple, the ash, the hornbeam, the elm and the birch have yet another method of escape from the home acre. Their seeds are winged, and torn off in a gale are frequently borne two hundred yards away. And stronger wings than these are plied in the cherry tree's service. The birds bide the time when a blush upon the fruit betrays its ripeness. Then the cherries are greedily devoured, and their seed, preserved from digestion in their stony cases are borne over hill, dale, and river to some islet or brookside where a sprouting cherry plant will be free from the stifling rivalries suffered by its parent. Yoked in harness with sheep, ox, and bird as planter is yonder nimble squirrel. We need not begrudge him the store of nuts he hides. He will forget some of them, he will be prevented by fright or frost from nibbling yet more, and so without intending it he will ensure for others and himself a sure succession of acorns and butternuts.
Very singular are the seeds that have come to resemble beetles; among these may be mentioned the seeds of the castor-oil plant and of the Iatropha. The pod of the Biserrula looks like a worm, and a worm half-coiled might well have served as a model for the mimicry of the Scorpiurus vermiculata. All these are much more likely to enlist the services of birds than if their resemblances to insects were less striking.