Cutaway view of the inside of the Telstar I satellite, showing the electronics canister covered with its protective blanket of many layers of Mylar. To control temperature, shutters automatically open all the way if the canister gets hotter than 80°F, close completely if it goes down to 50°F.

shutter (closed) electrical heat transfer insulation blanket heat transfer by radiation shutter (open) solar cells electronic chassis heat transfer by circulation thermal control mechanism nylon lacing microwave antennas frame

In designing the Telstar satellite, both its internal and external temperatures had to be controlled. The electronics canister inside the satellite operates best if it stays at approximately room temperature of 65 to 75°F. This much heat is supplied in the canister by dissipation of electrical energy from the solar cells. The container is well insulated to keep its temperature relatively stable, and it has shutters that open automatically if it begins to get overheated (see [above]). The operating characteristics of the solar cells on Telstar’s surface also had to be considered; they work better at rather cool temperatures. So we decided to keep the satellite’s skin at an average temperature of about 0°F, although temperatures actually will range quite a bit above and below the average as the satellite moves from sun to shadow.

Now, using this average temperature of 0°F (converted to 460°R) as T in our formula, we can solve for α/ε. We find that this gives us a ratio of approximately 0.7 for the satellite’s surface. However, this presents a problem. Almost 40 per cent of Telstar’s surface is taken up by its power plant of 3600 sapphire-covered solar cells. These cells, unfortunately, have a relatively high α/ε ratio—their α is 0.8 and their ε is 0.54, for an α/ε of 1.5. This means that the portion of the surface not used by either solar cells or antenna openings must, in order to give us an over-all average of about 0.7, have a very low α/ε ratio—less than 0.3.

To get this sort of ratio, we had to select carefully the material for the outer surface of the Telstar satellite. There were many kinds of surfaces that might have been used; they could have been metal or non-metal, rough or smooth, shiny or dull. And they could have been any color from black to white. However, to get a 0.3 ratio we needed something with a relatively high emissivity for the low-frequency electromagnetic radiation that the satellite emits and a rather low absorptivity for the high-frequency radiation coming from the sun. High emissivity meant that we should use a nonmetal surface rather than polished metal, since the emissivity of nonmetals is quite high at the temperatures in which we were interested, while that of polished metals is relatively low. And, to get low absorptivity, we decided that the color of these surface areas should be very close to a pure white.

Partially molten aluminum oxide particles being sprayed onto aluminum outer surface panels.

There were several substances that met our requirements. After testing a number of them, we decided to use aluminum panels coated with a thin layer of aluminum oxide (Al₂O₃). This coating is very pure, hard, and stable, and we left it rough to minimize changes due to meteoroid abrasion. Its α/ε ratio is 0.24. The aluminum oxide coating can be applied by means of the plasma jet process—particles of aluminum oxide are heated to a partially molten state, mixed with gases, and then sprayed onto the cleaned, pre-coated aluminum panels (see [illustration above]).

Using this carefully selected outer surface has helped solve the temperature-control problem. Since Telstar has been in orbit its internal and skin temperatures have kept well within the ranges we wanted them to. Thus you can see how some basic formulas from classical physics helped us choose the right material for the satellite’s surface—and even what color it should be. The blue-and-white checkered appearance that Telstar I finally took on was no accident—it was the result of carefully combining various colors and materials in just the right amounts to obtain the temperature balance we needed.

Peter Hrycak was born in Przemysl, Western Ukraine, and received a B.S. in 1954, an M.S. in 1955, and a Ph.D. in 1960 from the University of Minnesota. He joined Bell Telephone Laboratories in 1960, and has worked on low temperature refrigeration problems and thermal design and thermal testing of the Telstar satellite.