CASE HISTORY NO. 3
How Can We Make Optical Measurements on a Satellite?
Jeofry S. Courtney-Pratt
Physicist—Head, Mechanics Research Department
THE PROBLEM
Since the first Telstar satellite went into orbit, we have tried to trace its path through space precisely. But we also have had to keep a constant check on the position, or attitude, that the satellite takes as it travels. We are particularly interested in the direction of the spin axis about which it revolves, and we also want to know its spin rate, which is the number revolutions the satellite makes each minute. Although these might seem relatively simple jobs, they actually turned out to be rather complicated. And only at virtually the last minute, just before the satellite’s design was finally set, did we think of a new way of using reflected flashes of sunlight to report on its spin axis and spin rate.
Why We Want to Know About the Spin Axis
When the satellite was injected into its orbit, it was spin-stabilized to keep it from tumbling over and over, much as a rifle bullet is stabilized by being spun about its longitudinal axis. The Telstar satellite is roughly spherical, and it was designed to spin with the helical antenna end as its north pole and the antenna bands as its equator. On July 10, 1962, the satellite was given an initial spin of 177.7 revolutions a minute. As we expected, this rate is decreasing gradually; after two years it will only be spinning one tenth as fast.
The most important reason for keeping a close watch on the satellite’s spin axis is to make sure that microwave signals are sent and received steadily. It isn’t possible to build an antenna that radiates at exactly the same power in all directions. Telstar’s antennas work very well, but they operate better in the direction of the satellite’s equator than they do towards its poles. This means that if the spin axis is constantly changing transmission will fade in and out—even at times passing through “null” where no transmission at all is possible. No single fixed orientation is perfect for the spin axis, but we decided that the best average position would be to keep it always perpendicular to the plane of the earth’s orbit. We tried to make sure that the spin axis would not vary by more than five degrees from this direction at any time—although it probably could depart as much as 15 or 20 degrees without doing serious harm.
A second reason for being careful about the satellite’s spin axis is the problem of heat balance. If one end of the satellite points constantly at the sun and the other end does not, the end near the sun will get much too hot and the other will get much too cold. Therefore, we tried to fix the spin axis so that it stayed perpendicular to a line drawn from the satellite to the sun.