Reference should be made to the articles [Barometer], [Climate] and [Meteorology] for the measurement and variation of the pressure of the atmosphere, and the discussion of other properties.
ATMOSPHERIC ELECTRICITY. 1. It was not until the middle of the 18th century that experiments due to Benjamin Franklin showed that the electric phenomena of the atmosphere are not fundamentally different from those produced in the laboratory. For the next century the rate of progress was slow, though the ideas of Volta in Italy and the instrumental devices of Sir Francis Ronalds in England merit recognition. The invention of the portable electrometer and the water-dropping electrograph by Lord Kelvin in the middle of the 19th century, and the greater definiteness thus introduced into observational results, were notable events. Towards the end of the 19th century came the discovery made by W. Linss (6)[1] and by J. Elster and H. Geitel (7) that even the most perfectly insulated conductors lose their charge, and that this loss depends on atmospheric conditions. Hard on this came the recognition of the fact that freely charged positive and negative ions are always present in the atmosphere, and that a radioactive emanation can be collected. Whilst no small amount of observational work has been done in these new branches of atmospheric electricity, the science has still not developed to a considerable extent beyond preliminary stages. Observations have usually been limited to a portion of the year, or to a few hours of the day, whilst the results from different stations differ much in details. It is thus difficult to form a judgment as to what has most claim to acceptance as the general law, and what may be regarded as local or exceptional.
2. Potential Gradient.—In dry weather the electric potential in the atmosphere is normally positive relative to the earth, and increases with the height. The existence of earth currents (q.v.) shows that the earth, strictly speaking, is not all at one potential, but the natural differences of potential between points on the earth’s surface a mile apart are insignificant compared to the normal potential difference between the earth and a point one foot above it. What is aimed at in ordinary observations of atmospheric potential is the measurement of the difference of potential between the earth and a point a given distance above it, or of the difference of potential between two points in the same vertical line a given distance apart. Let a conductor, say a metallic sphere, be supported by a metal rod of negligible electric capacity whose other end is earthed. As the whole conductor must be at zero (i.e. the earth’s) potential, there must be an induced charge on the sphere, producing at its centre a potential equal but of opposite sign to what would exist at the same spot in free air. This neglects any charge in the air displaced by the sphere, and assumes a statical state of conditions and that the conductor itself exerts no disturbing influence. Suppose now that the sphere’s earth connexion is broken and that it is carried without loss of charge inside a building at zero potential. If its potential as observed there is −V (volts), then the potential of the air at the spot occupied by the sphere was +V. This method in one shape or another has been often employed. Suppose next that a fixed insulated conductor is somehow kept at the potential of the air at a given point, then the measurement of its potential is equivalent to a measurement of that of the air. This is the basis of a variety of methods. In the earliest the conductor was represented by long metal wires, supported by silk or other insulating material, and left to pick up the air’s potential. The addition of sharp points was a step in advance; but the method hardly became a quantitative one until the sharp points were replaced by a flame (fuse, gas, lamp), or by a liquid jet breaking into drops. The matter leaving the conductor, whether the products of combustion or the drops of a liquid, supplies the means of securing equality of potential between the conductor and the air at the spot where the matter quits electrical connexion with the conductor. Of late years the function of the collector is discharged in some forms of apparatus by a salt of radium. Of flame collectors the two best known are Lord Kelvin’s portable electrometer with a fuse, or F. Exner’s gold leaf electroscope in conjunction with an oil lamp or gas flame. Of liquid collectors the representative is Lord Kelvin’s water-dropping electrograph; while Benndorf’s is the form of radium collector that has been most used. It cannot be said that any one form of collector is superior all round. Flame collectors blow out in high winds, whilst water-droppers are apt to get frozen in winter. At first sight the balance of advantages seems to lie with radium. But while gaseous products and even falling water are capable of modifying electrical conditions in their immediate neighbourhood, the “infection” produced by radium is more insidious, and other drawbacks present themselves in practice. It requires a radium salt of high radioactivity to be at all comparable in effectiveness with a good water-dropper. Experiments by F. Linke (8) indicated that a water-dropper having a number of fine holes, or having a fine jet under a considerable pressure, picks up the potential in about a tenth of the time required by the ordinary radium preparation protected by a glass tube. These fine jet droppers with a mixture of alcohol and water have proved very effective for balloon observations.
Table I.—Annual Variation Potential Gradient.
| Place and Period. | Jan. | Feb. | March. | April. | May. | June. | July. | Aug. | Sept. | Oct. | Nov. | Dec. |
| Karasjok (10), 1903-1904 | 143 | 150 | 137 | 94 | 74 | 65 | 70 | 67 | 67 | 87 | 120 | 126 |
| Sodankylä (31), 1882-1883 | 94 | 133 | 148 | 155 | 186 | 93 | 53 | 77 | 47 | 72 | 71 | 71 |
| Potsdam (9), 1904 | 167 | 95 | 118 | 88 | 93 | 72 | 73 | 65 | 97 | 101 | 108 | 123 |
| Kew (12), 1898-1904 | 127 | 141 | 113 | 87 | 77 | 70 | 61 | 72 | 76 | 96 | 126 | 153 |
| Greenwich (13), 1893-1894, 1896 | 110 | 112 | 127 | 107 | 83 | 71 | 76 | 84 | 83 | 104 | 104 | 139 |
| Florence (14), 1883-1886 | 132 | 110 | 98 | 84 | 86 | 81 | 77 | 90 | 89 | 99 | 129 | 125 |
| Perpignan (15), 1886-1888 | 121 | 112 | 108 | 89 | 91 | 92 | 89 | 82 | 74 | 99 | 122 | 121 |
| Lisbon (16), 1884-1886 | 104 | 105 | 104 | 92 | 91 | 93 | 87 | 92 | 100 | 99 | 115 | 117 |
| Tokyo (17), 1897-1898, 1900-1901 | 165 | 145 | 117 | 86 | 62 | 58 | 41 | 59 | 59 | 97 | 134 | 176 |
| Batavia (18)(2 m.), 1887-1890 | 97 | 115 | 155 | 127 | 129 | 105 | 79 | 62 | 69 | 79 | 90 | 93 |
| Batavia (7.8 m.) 1890-1895 | 100 | 89 | 103 | 120 | 98 | 103 | 85 | 99 | 73 | 101 | 117 | 112 |
3. Before considering observational data, it is expedient to mention various sources of uncertainty. Above the level plain of absolutely smooth surface, devoid of houses or vegetation, the equipotential surfaces under normal conditions would be strictly horizontal, and if we could determine the potential at one metre above the ground we should have a definite measure of the potential gradient at the earth’s surface. The presence, however, of apparatus or observers upsets the conditions, while above uneven ground or near a tree or a building the equipotential surfaces cease to be horizontal. In an ordinary climate a building seems to be practically at the earth’s potential; near its walls the equipotential surfaces are highly inclined, and near the ridges they may lie very close together. The height of the walls in the various observatories, the height of the collectors, and the distance they project from the wall vary largely, and sometimes there are external buildings or trees sufficiently near to influence the potential. It is thus futile to compare the absolute voltages met with at two stations, unless allowance can be made for the influence of the environment. With a view to this, it has become increasingly common of late years to publish not the voltages actually observed, but values deduced from them for the potential gradient in the open in volts per metre. Observations are made at a given height over level open ground near the observatory, and a comparison with the simultaneous results from the self-recording electrograph enables the records from the latter to be expressed as potential gradients in the open. In the case, however, of many observatories, especially as regards the older records, no data for reduction exist; further, the reduction to the open is at best only an approximation, the success attending which probably varies considerably at different stations. This is one of the reasons why in the figures for the annual and diurnal variations in Tables I., II. and III., the potential has been expressed as percentages of its mean value for the year or the day. In most cases the environment of a collector is not absolutely invariable. If the shape of the equipotential surfaces near it is influenced by trees, shrubs or grass, their influence will vary throughout the year. In winter the varying depth of snow may exert an appreciable effect. There are sources of uncertainty in the instrument itself. Unless the insulation is perfect, the potential recorded falls short of that at the spot where the radium is placed or the water jet breaks. The action of the collector is opposed by the leakage through imperfect insulation, or natural dissipation, and this may introduce a fictitious element into the apparent annual or diurnal variation. The potentials that have to be dealt with are often hundreds and sometimes thousands of volts, and insulation troubles are more serious than is generally appreciated. When a water jet serves as collector, the pressure under which it issues should be practically constant. If the pressure alters as the water tank empties, a discontinuity occurs in the trace when the tank is refilled, and a fictitious element may be introduced into the diurnal variation. When rain or snow is falling, the potential frequently changes rapidly. These changes are often too rapid to be satisfactorily dealt with by an ordinary electrometer, and they sometimes leave hardly a trace on the photographic paper. Again rain dripping from exposed parts of the apparatus may materially affect the record. It is thus customary in calculating diurnal inequalities either to take no account of days on which there is an appreciable rainfall, or else to form separate tables for “dry” or “fine” days and for “all” days. Speaking generally, the exclusion of days of rain and of negative potential comes pretty much to the same thing, and the presence or absence of negative potential is not infrequently the criterion by reference to which days are rejected or are accepted as normal.
4. The potential gradient near the ground varies with the season of the year and the hour of the day, and is largely dependent on the weather conditions. It is thus difficult to form even a rough estimate of the mean value at any place unless hourly readings exist, extending over the whole or the greater part of a year. It is even somewhat precipitate to assume that a mean value deduced from a single year is fairly representative of average conditions. At Potsdam, G. Lüdeling (9) found for the mean value for 1904 in volts per metre 242. At Karasjok in the extreme north of Norway G.C. Simpson (10) in 1903-1904 obtained 139. At Kremsmünster for 1902 P.B. Zölss(11) gives 98. At Kew (12) the mean for individual years from 1898 to 1904 varied from 141 in 1900 to 179 in 1899, the mean from the seven years combined being 159. The large difference between the means obtained at Potsdam and Kremsmünster, as compared to the comparative similarity between the results for Kew and Karasjok, suggests that the mean value of the potential gradient may be much more dependent on local conditions than on difference of latitude.
At any single station potential gradient has a wide range of values. The largest positive and negative values recorded are met with during disturbed weather. During thunderstorms the record from an electrograph shows large sudden excursions, the trace usually going off the sheet with every flash of lightning when the thunder is near. Exactly what the potential changes amount to under such circumstances it is impossible to say; what the trace shows depends largely on the type of electrometer. Large rapid changes are also met with in the absence of thunder during heavy rain or snow fall. In England the largest values of a sufficiently steady character to be shown correctly by an ordinary electrograph occur during winter fogs. At such times gradients of +400 or +500 volts per metre are by no means unusual at Kew, and voltages of 700 or 800 are occasionally met with.
5. Annual Variation.—Table I. gives the annual variation of the potential gradient at a number of stations arranged according to latitude, the mean value for the whole year being taken in each case as 100. Karasjok as already mentioned is in the extreme north of Norway (69° 17′ N.); Sodankylä was the Finnish station of the international polar year 1882-1883. At Batavia, which is near the equator (6° 11′ S.) the annual variation seems somewhat irregular. Further, the results obtained with the water-dropper at two heights—viz. 2 and 7.8 metres—differ notably. At all the other stalions the difference between summer and winter months is conspicuous. From the European data one would be disposed to conclude that the variation throughout the year diminishes as one approaches the equator. It is decidedly less at Perpignan and Lisbon than at Potsdam, Kew and Greenwich, but nowhere is the seasonal difference more conspicuous than at Tokyo, which is south of Lisbon.