2. Trade-Wind Belts.—The trade belts near sea-level are characterized by fair weather, steady winds, infrequent light rains or even an almost complete absence of rain, very regular, although slight, annual and diurnal ranges of temperature, and a constancy and regularity of weather. The climate of the ocean areas in the trade-wind belts is indeed the simplest and most equable in the world, the greatest extremes over these oceans being found to leeward of the larger lands. On the lowlands swept over by the trades, beyond the polar limits of the equatorial rain belt (roughly between lats. 20° and 30°), are most of the great deserts of the world. These deserts extend directly to the water’s edge on the leeward western coasts of Australia, South Africa and South America.

The ranges and extremes of temperature are much greater over the continental interiors than over the oceans of the trade-wind belts. Minima of 32° or less occur during clear, quiet nights, and daily ranges of over 50° are common. The midsummer mean temperature rises above 90°, with noon maxima of 110° or more in the non-cloudy, dry air of a desert day. The days, with high, dry winds, carrying dust and sand, with extreme heat, accentuated by the absence of vegetation, are disagreeable, but the calmer nights, with active radiation under clear skies, are much more comfortable. The nocturnal temperatures are even not seldom too low for comfort in the cooler season, when thin sheets of ice may form.

While the trades are drying winds as long as they blow strongly over the oceans, or over lowlands, they readily become rainy if they are cooled by ascent over a mountain or highland. Hence the windward (eastern) sides of mountains or bold coasts in the trade-wind belts are well watered, while the leeward sides, or interiors, are dry. Mountainous islands in the trades, like the Hawaiian islands, many of the East and West Indies, the Philippines, Borneo, Ceylon, Madagascar, Teneriffe, &c., show marked differences of this sort. The eastern coasts of Guiana, Central America, south-eastern Brazil, south-eastern Africa, and eastern Australia are well watered, while the interiors are dry. The eastern highland of Australia constitutes a more effective barrier than that in South Africa; hence the Australian interior has a more extended desert. South America in the south-east trade belt is not well enclosed on the east, and the most arid portion is an interior district close to the eastern base of the Andes where the land is low. Even far inland the Andes again provoke precipitation along their eastern base, and the narrow Pacific coastal strip, to leeward of the Andes, is a very pronounced desert from near the equator to about lat. 30° S. The cold ocean waters, with prevailing southerly (drying) winds alongshore, are additional factors causing this aridity. Highlands in the trade belts are therefore moist on their windward slopes, and become oases of luxuriant plant growth, while close at hand, on the leeward sides, dry savannas or deserts may be found. The damp, rainy and forested windward side of Central America was from the earliest days of European occupation left to the natives, while the centre of civilization was naturally established on the more open and sunny south-western side.

The rainfall associated with the conditions just described is known as the trade type. These rains have a maximum in winter, when the trades are most active. In cases where the trade blows steadily throughout the year against mountains or bold coasts, as on the Atlantic coast of Central America, there is no real dry season. The curve for Hilo (mean annual rainfall 145.24 in.) on the windward side of the Hawaiian Islands, shows typical conditions (see fig. 5). The trade type of rainfall is often much complicated by the combination with it of the tropical type and of the monsoon type. In the Malay archipelago there are also complications of equatorial and trade rains; likewise in the West Indies.

3. Monsoon Belts.—In a typical monsoon region the rains follow the vertical sun, and therefore have a simple annual period much like that of the tropical type above described. This monsoon type of rainfall is well illustrated in the curve for Port Darwin (mean annual rainfall 62.72 in.), in Australia (see fig. 5). This summer monsoon rainfall results from the inflow of a body of warm, moist air from the sea upon a land area; there is a consequent retardation of the velocity of the air currents, as the result of friction, and an ascent of the air, the rainfall being particularly heavy where the winds have to climb over high lands. In India, the precipitation is heaviest at the head of the Bay of Bengal (where Cherrapunji, at the height of 4455 ft. in the Khasi Hills, has a mean annual rainfall of between 400 and 500 in.), along the southern base of the Himalayas (60 to 160 in.), on the bold western coast of the peninsula (80 to 120 in. and over), and on the mountains of Burma, (up to 160 in.). In the rain-shadow of the Western Ghats, the Deccan often suffers from drought and famine unless the monsoon rains are abundant and well distributed. The prevailing direction of the rainy monsoon wind in India is south-west; on the Pacific coast of Asia, it is south-east. This monsoon district is very large, including the Indian Ocean, Arabian Sea, Bay of Bengal, and adjoining continental areas; the Pacific coast of China, the Yellow and Japan seas, and numerous islands from Borneo to Sakhalin on the north and to the Ladrone Islands on the east. A typical temperature curve for a monsoon district is that for Nagpur, in the Indian Deccan (fig. 7), and a typical monsoon cloudiness curve is given in fig. 6, the maximum coming near the time of the vertical sun, in the rainy season, and the minimum in the dry season.

In the Australian monsoon region, which reaches across New Guinea and the Sunda Islands, and west of Australia, in the Indian Ocean, over latitudes 0°-10° S., the monsoon rains come with north-west winds in the period between November and March or April.

The general rule that eastern coasts in the tropics are the rainiest finds exceptions in the case of the rainy western coasts in India and other districts with similar monsoon rains. On the coast of the Gulf of Guinea, for example, there is a small rainy monsoon area during the summer; heavy rains fall on the seaward slopes of the Cameroon Mountains. Gorée, lat. 15° N., on the coast of Senegambia, gives a fine example of a rainy (summer) and a dry (winter) monsoon. Numerous combinations of equatorial, trade and monsoon rainfalls are found, often creating great complexity. The islands of the East Indian archipelago furnish many examples of such curious complications.

4. Mountain Climate.—In the torrid zone altitude is chiefly important because of its effect in tempering the heat of the lowlands, especially at night. If tropical mountains are high enough, they carry snow all the year round, even on the equator, and the zones of vegetation may range from the densest tropical forest at their base to the snow on their summits. The highlands and mountains within the tropics are thus often sharply contrasted with the lowlands, and offer more agreeable and more healthy conditions for white settlement. They are thus often sought by residents from colder latitudes as the most attractive resorts. In India, the hill stations are crowded during the hot months by civilian and military officials. The climate of many tropical plateaus and mountains has the reputation of being a “perpetual spring.” Thus on the interior plateau of the tropical Cordilleras of South America, and on the plateaus of tropical Africa, the heat is tempered by the altitude, while the lowlands and coasts are very hot. The rainfall on tropical mountains and highlands often differs considerably in amount from that on the lowlands, and other features common to mountain climates the world over are also noted.

The Characteristics of the Temperate Zones.

General.—As a whole, the “temperate zones” are temperate only in that their mean temperatures and their physiological effects are intermediate between those of the tropics and those of the polar zones. A marked changeableness of the weather is a striking characteristic of these zones. Apparently irregular and haphazard, these continual weather changes, although they are essentially non-periodic, nevertheless run through a fairly systematic series. Climate and weather are by no means synonymous over most of the extra-tropical latitudes.