Temperature.—The mean annual temperatures at the margins of the north temperate zone differ by more than 70°. The ranges between the mean temperatures of hottest and coldest months reach 120° at their maximum in north-eastern Siberia, and 80° in North America. A January mean of -60° and a July mean of 95°, and maxima of over 120° and minima of -90°, occur in the same zone. Such great ranges characterize the extreme land climates. Under the influence of the oceans, the windward coasts have much smaller ranges. The annual ranges in middle and higher latitudes exceed the diurnal, the conditions of much of the torrid zone thus being exactly reversed. Over much of the oceans of the temperate zones the annual range is less than 10°. In the south temperate zone there are no extreme ranges, the maxima, slightly over 30°, being near the margin of the zone in the interior of South America, South Africa and Australia. In these same localities the diurnal ranges rival those of the north temperate zone.

The north-eastern Atlantic and north-western Europe are about 35° too warm for their latitude in January, while north-eastern Siberia is 30° too cold. The lands north of Hudson Bay are 25° too cold, and the waters of the Alaskan Bay 20° too warm. In July, and in the southern hemisphere, the anomalies are small. The lands which are the centre of civilization in Europe average too warm for their latitudes. The diurnal variability of temperature is greater in the north temperate zone than elsewhere in the world, and the same month may differ greatly in its character in different years. The annual temperature curve has one maximum and one minimum. In the continental type the times of maximum and minimum are about one month behind the dates of maximum and minimum insolation. In the marine type the retardation may amount to nearly two months. Coasts and islands have a tendency to a cool spring and warm autumn; continents, to similar temperatures in both spring and fall.

Pressure and Winds.—The prevailing winds are the “westerlies,” which are much less regular than the trades. They vary greatly in velocity in different regions and in different seasons, and are stronger in winter than in summer. They are much interfered with, especially in the higher northern latitudes, by seasonal changes of temperature and pressure over the continents, whereby the latter establish, more or less successfully, a system of obliquely outflowing winds in winter and of obliquely inflowing winds in summer. In summer, when the lands have low pressure, the northern oceans are dominated by great oval areas of high pressure, with outflowing spiral eddies, while in winter, when the northern lands have high pressure, the northern portions of the oceans develop cyclonic systems of inflowing winds over their warm waters. All these great continental and oceanic systems of spiralling winds are important climatic controls.

The westerlies are also much confused and interrupted by storms, whence their designation of stormy westerlies. So common are such interruptions that the prevailing westerly wind direction is often difficult to discern without careful observation. Cyclonic storms are most numerous and best developed in winter. Although greatly interfered with near sea-level by continental changes of pressure, by cyclonic and anticyclonic whirls, and by local inequalities of the surface, the eastward movement of the atmosphere remains very constant aloft. The south temperate zone being chiefly water, the westerlies are but little disturbed there by continental effects. Between latitudes 40° and 60° S. the “brave west winds” blow with a constancy and velocity found in the northern hemisphere only on the oceans, and then in a modified form. Storms, frequent and severe, characterize these southern hemisphere westerlies, and easterly wind directions are temporarily noted during their passage. Voyages to the west around Cape Horn against head gales, and in cold wet weather, are much dreaded. South of Africa and Australia, also, the westerlies are remarkably steady and strong. The winter in these latitudes is stormier than the summer, but the seasonal difference is less than north of the equator.

Rainfall.—Rainfall is fairly abundant over the oceans and also over a considerable part of the lands (30-80 in. and more). It comes chiefly in connexion with the usual cyclonic storms, or in thunderstorms. So great are the differences, geographic and periodic, in rainfall produced by differences in temperature, topography, cyclonic conditions, &c., that only the most general rules can be laid down. The equatorward margin of the temperate zone rains is clearly defined on the west coasts, at the points where the coast deserts are replaced by belts of light or moderate rainfall. Bold west coasts, on the polar side of lat. 40°, are very rainy (100 in. and more a year in the most favourable situations). The hearts of the continents, far from the sea, and especially when well enclosed by mountains, or when blown over by cool ocean winds which warm while crossing the land, have light rainfall (less than 10-20 in.). East coasts are wetter than interiors, but drier than west coasts. Winter is the season of maximum rainfall over oceans, islands and west coasts, for the westerlies are then most active, cyclonic storms are most numerous and best developed, and the cold lands chill the inflowing damp air. At this season, however, the low temperatures, high pressures, and tendency to outflowing winds over the continents are unfavourable to rainfall, and the interior land areas as a rule then have their minimum. The warmer months bring the maximum rainfall over the continents. Conditions are then favourable for inflowing damp winds from the adjacent oceans; there is the best opportunity for convection; thunder-showers readily develop on the hot afternoons; the capacity of the air for water vapour is greatest. The marine type of rainfall, with a winter maximum, extends in over the western borders of the continents, and is also found in the winter rainfall of the sub-tropical belts. Rainfalls are heaviest along the tracks of most frequent cyclonic storms.

For continental stations the typical daily march of rainfall shows a chief maximum in the afternoon, and a secondary maximum in the night or early morning. The chief minimum comes between 10 A.M. and 2 P.M. Coast stations generally have a night maximum and a minimum between 10 A.M. and 4 P.M.

Humidity and Cloudiness.—S.A. Arrhenius gives the mean cloudiness for different latitudes as follows:—

70° N.60°50°40°30°20°10°Eq.10°20°30°40°50°60° S.
5961484942405058574846566675

The higher latitudes of the temperate zones thus have a mean cloudiness which equals and even exceeds that of the equatorial belt. The amounts are greater over the oceans and coasts than inland. The belts of minimum cloudiness are at about lat. 30° N. and S. Over the continental interiors the cloudiest season is summer, but the amount is never very large. Otherwise, winter is generally the cloudiest season and with a fairly high mean annual amount.

The absolute humidity as a whole decreases as the temperature falls. The relative humidity averages 90%, more or less, over the oceans, and is high under the clouds and rain of cyclonic storms, but depends, on land, upon the wind direction, winds from an ocean or from a lower latitude being damper, and those from a continent or from a colder latitude being drier.