| α, | β, | γ, | δ | = 0; | ||
| a, | b, | c, | d | |||
| a′, | b′, | c′, | d′ | |||
| a″, | b″, | c″, | d″ |
or, as this may be written,
| α, | β, | γ, | - δ | a, | b, | c | = 0; | |||||
| a, | b, | c, | d | a′, | b′, | c′ | ||||||
| a′, | b′, | c′, | d′ | a″, | b″, | c″ | ||||||
| a″, | b″, | c″, | d″ |
which, considering δ as standing herein for its value αx + βy + γz, is a consequence of the original equations only: we have thus an expression for αx + βy + γz, an arbitrary linear function of the unknown quantities x, y, z; and by comparing the coefficients of α, β, γ on the two sides respectively, we have the values of x, y, z; in fact, these quantities, each multiplied by
| a, | b, | c | , | ||
| a′, | b′, | c′ | |||
| a″, | b″, | c″ |
are in the first instance obtained in the forms
| 1 | , | 1 | , | 1 | ; | |||||||||||||||
| a, | b, | c, | d | a, | b, | c, | d | a, | b, | c, | d | |||||||||
| a′, | b′, | c′, | d′ | a′, | b′, | c′, | d′ | a′, | b′, | c′, | d′ | |||||||||
| a″, | b″, | c″, | d″ | a″, | b″, | c″, | d″ | a″, | b″, | c″, | d″ |
but these are
| = | b, | c, | d | , - | c, | d, | a | , | d, | a, | b | , | ||||||
| b′, | c′, | d′ | c′, | d′, | a′ | d′, | a′, | b′ | ||||||||||
| b″, | c″, | d″ | c″, | d″, | a″ | d″, | a″, | b″ |
or, what is the same thing,