| Fig. 6. |
From the value of Bm : B0 we see that no lateral spectrum can surpass the central image in brightness; but this result depends upon the hypothesis that the ruling acts by opacity, which is generally very far from being the case in practice. In an engraved glass grating there is no opaque material present by which light could be absorbed, and the effect depends upon a difference of retardation in passing the alternate parts. It is possible to prepare gratings which give a lateral spectrum brighter than the central image, and the explanation is easy. For if the alternate parts were equal and alike transparent, but so constituted as to give a relative retardation of ½λ, it is evident that the central image would be entirely extinguished, while the first spectrum would be four times as bright as if the alternate parts were opaque. If it were possible to introduce at every part of the aperture of the grating an arbitrary retardation, all the light might be concentrated in any desired spectrum. By supposing the retardation to vary uniformly and continuously we fall upon the case of an ordinary prism: but there is then no diffraction spectrum in the usual sense. To obtain such it would be necessary that the retardation should gradually alter by a wave-length in passing over any element of the grating, and then fall back to its previous value, thus springing suddenly over a wave-length (Phil. Mag., 1874, 47, p. 193). It is not likely that such a result will ever be fully attained in practice; but the case is worth stating, in order to show that there is no theoretical limit to the concentration of light of assigned wave-length in one spectrum, and as illustrating the frequently observed unsymmetrical character of the spectra on the two sides of the central image.[4]
We have hitherto supposed that the light is incident perpendicularly upon the grating; but the theory is easily extended. If the incident rays make an angle θ with the normal (fig. 6), and the diffracted rays make an angle φ (upon the same side), the relative retardation from each element of width (a + d) to the next is (a + d) (sinθ + sinφ); and this is the quantity which is to be equated to mλ. Thus
sinθ + sinφ = 2sin ½(θ + φ) cos ½ (θ − φ) = mλ/(a + d) (5).
The “deviation” is (θ + φ), and is therefore a minimum when θ = φ, i.e. when the grating is so situated that the angles of incidence and diffraction are equal.
| Fig. 7. |
In the case of a reflection grating the same method applies. If θ and φ denote the angles with the normal made by the incident and diffracted rays, the formula (5) still holds, and, if the deviation be reckoned from the direction of the regularly reflected rays, it is expressed as before by (θ + φ), and is a minimum when θ = φ, that is, when the diffracted rays return upon the course of the incident rays.
In either case (as also with a prism) the position of minimum deviation leaves the width of the beam unaltered, i.e. neither magnifies nor diminishes the angular width of the object under view.
From (5) we see that, when the light falls perpendicularly upon a grating (θ = 0), there is no spectrum formed (the image corresponding to m = 0 not being counted as a spectrum), if the grating interval σ or (a + d) is less than λ. Under these circumstances, if the material of the grating be completely transparent, the whole of the light must appear in the direct image, and the ruling is not perceptible. From the absence of spectra Fraunhofer argued that there must be a microscopic limit represented by λ; and the inference is plausible, to say the least (Phil. Mag., 1886). Fraunhofer should, however, have fixed the microscopic limit at ½λ, as appears from (5), when we suppose θ = ½π, φ = ½π.
| Fig. 8. |