We will now consider the important subject of the resolving power of gratings, as dependent upon the number of lines (n) and the order of the spectrum observed (m). Let BP (fig. 8) be the direction of the principal maximum (middle of central band) for the wave-length λ in the mth spectrum. Then the relative retardation of the extreme rays (corresponding to the edges A, B of the grating) is mnλ. If BQ be the direction for the first minimum (the darkness between the central and first lateral band), the relative retardation of the extreme rays is (mn + 1)λ. Suppose now that λ + δλ is the wave-length for which BQ gives the principal maximum, then

(mn + 1)λ = mn(λ + δλ);

whence

δλ/λ = 1/mn     (6).

According to our former standard, this gives the smallest difference of wave-lengths in a double line which can be just resolved; and we conclude that the resolving power of a grating depends only upon the total number of lines, and upon the order of the spectrum, without regard to any other considerations. It is here of course assumed that the n lines are really utilized.

In the case of the D lines the value of δλ/λ is about 1/1000; so that to resolve this double line in the first spectrum requires 1000 lines, in the second spectrum 500, and so on.

It is especially to be noticed that the resolving power does not depend directly upon the closeness of the ruling. Let us take the case of a grating 1 in. broad, and containing 1000 lines, and consider the effect of interpolating an additional 1000 lines, so as to bisect the former intervals. There will be destruction by interference of the first, third and odd spectra generally; while the advantage gained in the spectra of even order is not in dispersion, nor in resolving power, but simply in brilliancy, which is increased four times. If we now suppose half the grating cut away, so as to leave 1000 lines in half an inch, the dispersion will not be altered, while the brightness and resolving power are halved.

There is clearly no theoretical limit to the resolving power of gratings, even in spectra of given order. But it is possible that, as suggested by Rowland,[5] the structure of natural spectra may be too coarse to give opportunity for resolving powers much higher than those now in use. However this may be, it would always be possible, with the aid of a grating of given resolving power, to construct artificially from white light mixtures of slightly different wave-length whose resolution or otherwise would discriminate between powers inferior and superior to the given one.[6]

If we define as the “dispersion” in a particular part of the spectrum the ratio of the angular interval dθ to the corresponding increment of wave-length dλ, we may express it by a very simple formula. For the alteration of wave-length entails, at the two limits of a diffracted wave-front, a relative retardation equal to mndλ. Hence, if a be the width of the diffracted beam, and dθ the angle through which the wave-front is turned,