ω = 2πh/λƒ     (14),

so that in this case

e = λƒ / h     (15).

The bands are thus of the same width as those due to two infinitely narrow apertures coincident with the central lines of the retarded and unretarded streams, the subject of examination being itself a fine luminous line.

If it be desired to see a given number of bands in the whole or in any part of the spectrum, the thickness of the retarding plate is thereby determined, independently of all other considerations. But in order that the bands may be really visible, and still more in order that they may be black, another condition must be satisfied. It is necessary that the aperture of the pupil be accommodated to the angular extent of the spectrum, or reciprocally. Black bands will be too fine to be well seen unless the aperture (2h) of the pupil be somewhat contracted. One-twentieth to one-fiftieth of an inch is suitable. The aperture and the number of bands being both fixed, the condition of blackness determines the angular magnitude of a band and of the spectrum. The use of a grating is very convenient, for not only are there several spectra in view at the same time, but the dispersion can be varied continuously by sloping the grating. The slits may be cut out of tin-plate, and half covered by mica or “microscopic glass,” held in position by a little cement.

If a telescope be employed there is a distinction to be observed, according as the half-covered aperture is between the eye and the ocular, or in front of the object-glass. In the former case the function of the telescope is simply to increase the dispersion, and the formation of the bands is of course independent of the particular manner in which the dispersion arises. If, however, the half-covered aperture be in front of the object-glass, the phenomenon is magnified as a whole, and the desirable relation between the (unmagnified) dispersion and the aperture is the same as without the telescope. There appears to be no further advantage in the use of a telescope than the increased facility of accommodation, and for this of course a very low power suffices.

The original investigation of Stokes, here briefly sketched, extends also to the case where the streams are of unequal width h, k, and are separated by an interval 2g. In the case of unequal width the bands cannot be black; but if h = k, the finiteness of 2g does not preclude the formation of black bands.

The theory of Talbot’s bands with a half-covered circular aperture has been considered by H. Struve (St Peters. Trans., 1883, 31, No. 1).

The subject of “Talbot’s bands” has been treated in a very instructive manner by A. Schuster (Phil. Mag., 1904), whose point of view offers the great advantage of affording an instantaneous explanation of the peculiarity noticed by Brewster. A plane pulse, i.e. a disturbance limited to an infinitely thin slice of the medium, is supposed to fall upon a parallel grating, which again may be regarded as formed of infinitely thin wires, or infinitely narrow lines traced upon glass. The secondary pulses diverted by the ruling fall upon an object-glass as usual, and on arrival at the focus constitute a procession equally spaced in time, the interval between consecutive members depending upon the obliquity. If a retarding plate be now inserted so as to operate upon the pulses which come from one side of the grating, while leaving the remainder unaffected, we have to consider what happens at the focal point chosen. A full discussion would call for the formal application of Fourier’s theorem, but some conclusions of importance are almost obvious.

Previously to the introduction of the plate we have an effect corresponding to wave-lengths closely grouped around the principal wave-length, viz. σ sin φ, where σ is the grating-interval and φ the obliquity, the closeness of the grouping increasing with the number of intervals. In addition to these wave-lengths there are other groups centred round the wave-lengths which are submultiples of the principal one—the overlapping spectra of the second and higher orders. Suppose now that the plate is introduced so as to cover naif the aperture and that it retards those pulses which would otherwise arrive first. The consequences must depend upon the amount of the retardation. As this increases from zero, the two processions which correspond to the two halves of the aperture begin to overlap, and the overlapping gradually increases until there is almost complete superposition. The stage upon which we will fix our attention is that where the one procession bisects the intervals between the other, so that a new simple procession is constituted, containing the same number of members as before the insertion of the plate, but now spaced at intervals only half as great. It is evident that the effect at the focal point is the obliteration of the first and other spectra of odd order, so that as regards the spectrum of the first order we may consider that the two beams interfere. The formation of black bands is thus explained, and it requires that the plate be introduced upon one particular side, and that the amount of the retardation be adjusted to a particular value. If the retardation be too little, the overlapping of the processions is incomplete, so that besides the procession of half period there are residues of the original processions of full period. The same thing occurs if the retardation be too great. If it exceed the double of the value necessary for black bands, there is again no overlapping and consequently no interference. If the plate be introduced upon the other side, so as to retard the procession originally in arrear, there is no overlapping, whatever may be the amount of retardation. In this way the principal features of the phenomenon are accounted for, and Schuster has shown further how to extend the results to spectra having their origin in prisms instead of gratings.