10. Diffraction when the Source of Light is not seen in Focus.—The phenomena to be considered under this head are of less importance than those investigated by Fraunhofer, and will be treated in less detail; but in view of their historical interest and of the ease with which many of the experiments may be tried, some account of their theory cannot be omitted. One or two examples have already attracted our attention when considering Fresnel’s zones, viz. the shadow of a circular disk and of a screen circularly perforated.

Fresnel commenced his researches with an examination of the fringes, external and internal, which accompany the shadow of a narrow opaque strip, such as a wire. As a source of light he used sunshine passing through a very small hole perforated in a metal plate, or condensed by a lens of short focus. In the absence of a heliostat the latter was the more convenient. Following, unknown to himself, in the footsteps of Young, he deduced the principle of interference from the circumstance that the darkness of the interior bands requires the co-operation of light from both sides of the obstacle. At first, too, he followed Young in the view that the exterior bands are the result of interference between the direct light and that reflected from the edge of the obstacle, but he soon discovered that the character of the edge—e.g. whether it was the cutting edge or the back of a razor—made no material difference, and was thus led to the conclusion that the explanation of these phenomena requires nothing more than the application of Huygens’s principle to the unobstructed parts of the wave. In observing the bands he received them at first upon a screen of finely ground glass, upon which a magnifying lens was focused; but it soon appeared that the ground glass could be dispensed with, the diffraction pattern being viewed in the same way as the image formed by the object-glass of a telescope is viewed through the eye-piece. This simplification was attended by a great saving of light, allowing measures to be taken such as would otherwise have presented great difficulties.

Fig. 17.

In theoretical investigations these problems are usually treated as of two dimensions only, everything being referred to the plane passing through the luminous point and perpendicular to the diffracting edges, supposed to be straight and parallel. In strictness this idea is appropriate only when the source is a luminous line, emitting cylindrical waves, such as might be obtained from a luminous point with the aid of a cylindrical lens. When, in order to apply Huygens’s principle, the wave is supposed to be broken up, the phase is the same at every element of the surface of resolution which lies upon a line perpendicular to the plane of reference, and thus the effect of the whole line, or rather infinitesimal strip, is related in a constant manner to that of the element which lies in the plane of reference, and may be considered to be represented thereby. The same method of representation is applicable to spherical waves, issuing from a point, if the radius of curvature be large; for, although there is variation of phase along the length of the infinitesimal strip, the whole effect depends practically upon that of the central parts where the phase is sensibly constant.[10]

In fig. 17 APQ is the arc of the circle representative of the wave-front of resolution, the centre being at O, and the radius QA being equal to a. B is the point at which the effect is required, distant a + b from O, so that AB = b, AP = s, PQ = ds.

Taking as the standard phase that of the secondary wave from A, we may represent the effect of PQ by

cos 2π( t δ)· ds,
r λ

where δ = BP − AP is the retardation at B of the wave from P relatively to that from A.

Now

δ = (a + b) s²/2ab     (1),