Strange as it may appear, the advances that have been made in the study of earthquakes and the world-wide interest shown in their phenomena were initiated in work commenced in Japan. When the Japanese government, Seismology in Japan. desiring to adopt Western knowledge, invited to its shores bodies of men to act as its instructors, the attention of the newcomers was naturally attracted to the frequent shakings of the ground. Interest in these phenomena increased more rapidly than their frequency, and at length it was felt that something should be done for their systematic study. At midnight on the 22nd of February 1880 movements more violent than usual occurred; chimneys were shattered or rotated, tiles slid down from roofs, and in the morning it was seen that Yokohama had the appearance of a city that had suffered a bombardment. The excitement was intense, and before the ruins had been removed a meeting was convened and the Seismological Society of Japan established. The twenty volumes of original papers published by this body summarize to a large extent the results of the later study of seismology.[1]

The attention of the students of earthquakes in Japan was at first directed almost entirely to seismometry or earthquake measurement. Forms of apparatus which then existed, as for example the seismographs, seismometers and seismoscopes of Mallet, Palmieri and others, were subjected to trial; but inasmuch as they did little more than indicate that an earthquake had taken place—the more elaborate forms recording also the time of its occurrence—they were rapidly discarded, and instruments were constructed to measure earthquake motion. Slightly modified types of the new instruments devised in Japan were adopted throughout the Italian peninsula, and it is fair to say that the seismometry developed in Japan revolutionized the seismometry of the world. The records obtained from the new instruments increased our knowledge of the character of earthquake motion, and the engineer and the architect were placed in a position to construct so that the effects of known movements could be minimized. It was no doubt the marked success, both practical and scientific, attending these investigations that led the Japanese government to establish a chair of seismology at its university, to organize a system of nearly 1000 observing stations throughout the country, and in 1893 to appoint a committee of scientific and practical men to carry out investigations which might palliate the effects of seismic disturbances. In the first year this committee received a grant of £5000, and as liberal sums for the same purpose appear from time to time in the parliamentary estimates, it may be assumed that the work has been fraught with good results. In their publications we find not only records of experiences and experiments in Japan, but descriptions and comments upon earthquake effects in other countries. In two of the volumes there are long and extremely well illustrated accounts of the earthquake which on the 12th of June 1897 devastated Assam, to which country two members of the above-mentioned committee were despatched to gather such information as might be of value to the architect and builder in earthquake-shaken districts.

A great impetus to seismological investigation in Europe and America was no doubt given by the realization of the fact that a large earthquake originating in any one part of the world may be recorded in almost any other. Italy Seismological research. for many years past has had its observatories for recording earthquakes which can be felt, and which are of local origin, but at the present time at all its first-class stations we find instruments to record the unfelt movements due to earthquakes originating at great distances, and as much attention is now paid to the large earthquakes of the world as to the smaller ones originating within Italian territory.[2] The Kaiserliche Akademie der Wissenschaften of Vienna established earthquake observatories in Austria,[3] and the Central Observatorium of St Petersburg has carried out similar work in Russia. Germany attached a seismological observatory to its university at Strassburg, whilst provision has been made for a professorship of Earth Physics (Geophysik) at Göttingen.[4] In accordance with the recommendation of the British Association, seismographs of a similar character have been installed at stations all over the world.[5] The principal objects of this extended and still extending system of stations are to determine the velocity with which motion is propagated over the surface and through the interior of the earth, to locate the positions of sub-oceanic earthquake origins, and generally to extend our knowledge respecting the physical nature of the planet on which we live.

We now know that earthquakes are many times more frequent than was previously supposed. In Japan, for example, between 1885 and 1892 no fewer than 8331 were recorded—that is to say, on the average there were during that time Frequency of earthquakes. more than 1000 disturbances per year. Although many of these did not cause a sensible shaking over areas exceeding a few hundred square miles, many of them were sufficiently intense to propagate vibrations round and through the globe. If we pick out the well-marked earthquake districts of the world, and give to each of them a seismicity or earthquake frequency per unit area one-third of that in Japan, the conclusion arrived at is that considerable areas of our planet are on the average shaken every half-hour.

The knowledge which we now possess respecting the localities where earthquakes are frequent and the forms of the foci from which they have spread, enables us to speak definitely respecting the originating causes of many of these Volcanoes and earthquakes. phenomena. It is found, for example, that although in many countries there may be displays of volcanic and seismic activity taking place almost side by side, it is only rarely that there is direct relationship between the two. Now and then, however, before a volcano breaks into eruption there may be a few ineffectual efforts to form a vent, each of which is accompanied by no more than a slight local shaking of the ground. This is true even for the largest and most violent eruptions, when mountains have with practically a single effort blown off their heads and shoulders. Thus the earthquake which accompanied the eruption of Bandaisan, in central Japan, in 1888 was felt only over a radius of 25 m. The analyses of the seismic registers of Japan clearly indicate that comparatively few shakings originate near to the volcanoes of the country, the majority of them, like those of many other countries, coming from regions where volcanic rocks are absent. The greatest number spread inland from the Pacific seaboard, the movement becoming more and more feeble as it approaches the backbone of the country, which is drilled with numerous volcanic vents. What is true for Japan is generally true for the western coasts of North and South America.

Speaking broadly, earthquakes are most frequent along the steeper flexures in the earth’s surface, and in those regions where there is geological evidence to show that slow secular movements in the earth’s crust are possibly yet in Origin of earthquakes. progress. With a unit distance of 2 degrees, or 120 geographical m., we find that the slopes running eastwards from the highlands of Japan and westwards from the Andean ridges down into the Pacific vary from 1 in 20 to 1 in 30, and it is on the faces or near to the bottom of these slopes that seismic efforts are frequent. The slopes running from Australia, eastern America and western Europe into the neighbouring oceans vary between 1 in 70 and 1 in 250, and in these regions earthquakes are of rare occurrence. The seismic activity met with in the Himalayas and the Alps finds its best explanation in the fact that these mountains are geologically recent, and there are no reasons to doubt that the forces which brought their folds into existence are yet in action.

This peculiar association of earthquakes with pronounced topographical configuration and certain geological conditions evidently indicates that the origin of many of them is connected with rock folding. Inasmuch as certain large earthquakes have been accompanied by rock fracture, as for example in 1891, when in central Japan a fault some 50 m. in length was created, whilst the origins of others have been distinctly traced to the line of an existing fault or its continuation, we may conclude that the majority of earthquakes are spasmodic accelerations in the secular movements which are creating (and in some instances possibly obliterating) the more prominent features of the earth’s surface. These secular movements, which include upheavals, subsidences, horizontal displacements—all of which are explained on the assumption of a crust seeking support on a nucleus gradually contracting by loss of heat, are collectively referred to as bradyseismical (βραδύς, slow) movements. To these may be added movements directly attributable to the influence of gravity. Sub-oceanic districts in a state of seismic strain may be so far loaded by the accumulation of sediments that gentle bending may be accompanied by sudden yieldings. This possibly accounts for the frequency of earthquakes off the mouth of the Tonegawa on the eastern side of Japan. The distortions so frequently observed in fossils and pebbles, the varying thickness of contorted strata, and the “creep” in coal-mines, together with other phenomena, indicate that rocks may flow. Observations of this nature lead to the supposition that high plateau-like regions may be gradually subsiding under the influence of their own weight, and that the process of settlement may from time to time be spasmodic in its character. Whether the earthquakes which originate round the submerged basal frontiers of the continents bounding the Pacific are ever attributable to such activities, it is impossible to say. All that we know with certainty is that they are sometimes accompanied by such a vast displacement of material that the ocean has been set into a state of oscillation for periods of 24 hours, that in some instances there have been marked changes in depth, and that enormous sub-oceanic landslips have occurred. These phenomena are, however, equally well explained on the assumption of sudden faulting accompanied by violent shaking, which would dislodge steeply inclined beds of material beneath the ocean as it does upon the land.

Although the proximate cause of earthquake motion is traced to sudden yieldings in the crust of the earth brought about by some form of bradyseismical action, the existence of at least two distinct types of seismic motion Two types of earthquake motion. indicates that the mechanical conditions accompanying the fracturing of rocks are not always identical. 90 or 95% of the earthquakes which can be recorded consist of elastic or quasi-elastic vibrations. The remainder, including the large earthquakes, not only exhibit the elastic movements, but are accompanied by surface undulations which are propagated most certainly for some hundreds of miles round their origin, and then as horizontal movements sweep over the whole surface of the globe. The former of these may accompany the formation of a new fault or the sudden renewal of movement along an old one; they are cracking or rending effects, without any great displacement. The latter are probably fracturings accompanied by vertical and horizontal displacements of masses of the earth’s crust sufficiently great to set up the observed surface undulations. These shocks are so frequently followed a few minutes later by disturbances, which from their similarity to the movements which have preceded them may be called earthquake echoes, that we are led to the speculation that we are here dealing with the caving-in of ill-supported portions of the earth’s crust, the waves from which are radiated to boundaries and then returned to their origin to coalesce and give rise to a second impulse not unlike the primary. Succeeding the first repetition of motion recorded by the seismograph there is often a rhythmical repetition of similar wave groups, suggesting the existence within our earth of phenomena akin to multiple echoes.

The introduction of new methods into seismometry quickly revolutionized our ideas respecting the character of earthquake motion. Although an earthquake may be strongly felt within a distance of 50 m. from its origin, and Character of earthquake motion. although the movements in the upper storeys of buildings within the shaken area may be large, the actual range of the horizontal motion of the ground is usually less than 1⁄10 of an inch. With such earthquakes ordinary seismographs for recording vertical motion do not show any disturbance. When the movement reaches ½ in. it becomes dangerous, and a back-and-forth movement of an inch is usually accompanied by destructive effects. In this latter case the amplitude of the vertical record which indicates the existence of surface waves will vary between ½ and 1⁄100 of an inch. In the earthquake which devastated central Japan on the 26th of October 1891, nearly every building within the epifocal district fell, the ground was fissured, forests slipped down from mountain sides to dam up valleys, whilst the valleys themselves were permanently compressed. The horizontal movements seem to have reached 9 in. or 1 ft., and the surface undulations were visible to the eye.