The rapidity with which the movements are performed varies throughout a disturbance. A typical earthquake usually commences with minute elastic vibrations, the periods of which vary between 1⁄5 and 1⁄20 of a second. These Period and duration. are recorded by seismographs, and are noticed by certain of the lower animals like pheasants, which before the occurrence of movement perceptible to human beings scream as if alarmed. When an earthquake is preceded by a sound we have evidence of preliminary tremors even more rapid than those recorded by seismographs. Following these precursors there is a shock or shocks, the period of which will be 1 or 2 seconds. From this climax the movements, although irregular in character, become slower and smaller until finally they are imperceptible. The duration of a small earthquake usually varies from a few seconds to a minute, but large earthquakes, which are accompanied by surface undulations, may be felt for 2 or 3 minutes, whilst an ordinary seismograph indicates a duration of from 6 to 12 minutes. A free horizontal pendulum tells us that with severe earthquakes the ground comes to rest by a series of more or less rhythmical surgings, continuing over 1 or 2 hours. Although the maximum displacement has a definite direction, the successive vibrations are frequently performed in many different azimuths. The predominating direction at a given station in certain instances is apparently at right angles to the strike of the neighbouring strata, this being the direction of easiest yielding.

Earthquake motion as recorded at stations several thousands of miles distant from its origin exhibits characteristics strikingly different from those just described. The precursors now show periods of from 1 to 5 seconds, whilst the Velocity. largest movements corresponding to the shocks may have periods of from 20 to 40 seconds. The interval of time by which the first tremors have outraced the maximum movement has also become greater. Within a few hundreds of miles from an origin this interval increases steadily, the velocity of propagation of the first movements being about 2 km. per second, whilst that of the latter may be taken at about 1.6 km. per second. Beyond this distance the velocity of transmission of the first movements rapidly increases, and for great distances, as for example from Japan to England, it is higher than we should expect for waves of compression passing through steel or glass. This observation precludes the idea that these preliminary tremors have travelled through the heterogeneous crust of the earth, and since the average velocity of their transmission increases with the length of the path along which they have travelled, and we but rarely obtain certain evidence that a seismograph has been disturbed by waves which have reached it by travelling in opposite directions round the world, we are led to the conclusion that earthquake precursors pass through our earth and not round its surface. The following table relating to earthquakes, which originated off the coast of Borneo on the 20th and 27th of September 1897, is illustrative of the velocities here considered:—

Localities.Distance
from
origin
in degrees.
Velocity
in kms.
per sec. if
on chord.
¼ √Average
depth of
chord in
kms.
Nicolaieff 81° 8.1 8.0
Potsdam 92° 8.4 9.1
Catania, Ischia, Rocca di Papa, Rome 96° 9.0 9.5
Isle of Wight 103° 9.8 10.2

The chords referred to here are those joining the earthquake origins and distant observing stations, and it will be noted that one-quarter of the square root of the average depths at which these run closely corresponds to observed average velocities if wave paths followed chords. This increase of velocity with average depth shows that the paths followed through the earth must be curved with their convexity towards the centre of the earth. These observations do not directly tell us to what extent a true wave path is deflected from the direction of a chord, but they suggest as an extremely plausible assumption that the square of the speed is a linear function of the depth below the surface of the earth. With this assumption Dr C.G. Knott shows that the square of the speed (v²) can be expressed linearly in terms of the average depth of the chord d, thus: v² = 2.9 + .026 d, the units being miles and seconds. The formula applies with fair accuracy to moderate and high values of d, but it gives too high a value for short chords. It follows that the square of the speed increases 0.9% per mile of descent in the earth. The conclusion we arrive at is that the preliminary tremors which pass through the earth do so in the vicinity of their origin at the rate of almost 2.3 km. per second. This velocity increases as the wave path plunges downwards, attaining in the central regions a velocity of 16 to 17 kms., whilst the highest average velocity which is across a diameter lies between 10 and 12 kms. per second.

The large surface waves radiating from an origin to a distant place have velocities lying between 1.6 and 4 kms. per second, and it has been observed that when the higher velocity has been noted this refers to an observation at a station very remote from the origin. One explanation of this is the assumption that only very large waves indicating a large initial disturbance are capable of travelling to great distances, and as pointed out by R.D. Oldham, large waves under the influence of gravity will travel faster than small waves. These waves (which may be gravitational or distortional) are recorded as slow tiltings of the ground measured by angles of 0.5 to 10 or 15 seconds of arc, or as horizontal displacements of 0.5 or several millimetres. Their calculated lengths have reached 50 kms. (31 m.).

In the section of this article relating to the cause of earthquakes a little has been said about their frequency or the number of times these phenomena are repeated during a given interval of time. It has been shown that all countries Frequency. are very often moved by earthquakes which have originated at great distances. Great Britain, for example, is crossed about 100 times a year by earthquake waves having durations of from 3 minutes to 3 hours, whilst the vibratory motions which originate in that country are not only small but of rare occurrence. In the earlier stages of the world’s history, because the contraction of its nucleus was more rapid than it is at present, it is commonly inferred that phenomena accompanying bradyseismical activity must have been more pronounced and have shown themselves upon a grander scale than they do at the present time. Now, although the records of our rocks only carry us back over a certain portion of this history, they certainly represent an interval of time sufficiently long to furnish some evidence of such enfeeblement if it ever existed. So far from this being the case, however, we meet with distinct evidences in the later chapters of geological history of plutonic awakenings much more violent than those recorded at its commencement. During Palaeozoic times many mountain ranges were formed, and accompanying these orogenic processes there was marked volcanic activity. In the succeeding Secondary period plutonic forces were quiescent, but during the formation of the early Tertiaries, when some of the largest mountain ranges were created, they awoke with a vigour greater than had ever been previously exhibited. At this period it is not improbable that Scotland was as remarkable for its volcanoes and its earthquakes as Japan is at the present day. If the statement relating to the general decrease in bradyseismical changes referred merely to their frequency, and omitted reference to their magnitude, the views of the geologist and physicist might harmonize. One explanation for this divergence of opinion may rest on the fact that too little attention has been directed to all the conditions which accompany the adaptation of the earth’s crust to its shrinking nucleus. As the latter grows smaller the puckerings and foldings of the former should grow larger. Each succeeding geological epoch should be characterized by mountain formations more stupendous than those which preceded them, whilst the fracturing, dislocation, caving-in of ill-supported regions, and creation of lines of freedom for the exhibition of volcanic activity which would accompany these changes, would grow in magnitude. The written records of many countries reflect but on a smaller scale the crystallized records in their hills. In 1844, at Comrie, in Perthshire, as many as twelve earthquakes were recorded in a single month, whilst now there are but one or two per year. Earthquake frequency varies with time. A district under the influence of hypogenic activities reaches a condition of seismic strain which usually is relieved rapidly at first, but subsequently more slowly.

The small shocks which follow an initial large disturbance are known as after-shocks. The first shock which in 1891 devastated central Japan was accompanied by the formation of a large fault, and the 3364 small shocks which succeeded this during the following two years are regarded as due to intermittent settlements of disjointed material. The decreasing frequency with which after-shocks occur may be represented by a curve. Dr F. Omori points out that the continuation of such a curve gives the means of determining the length of time which will probably elapse before the region to which it refers will return to the same seismic quiescence that it had prior to the initial disturbance.

The positive results that we have respecting the periodicity of earthquakes are but few. Generally earthquakes are somewhat more frequent during winter than during summer, and this applies to both the northern and southern hemispheres. The Periodicity. annual periodicity, which, however, does not show itself if only destructive earthquakes are considered, finds an explanation, according to Dr Knott, in the annual periodicity of long-continued stresses, as for example those due to the accumulation of snow and to barometric gradients. For certain earthquake regions there appears to be a distinct semi-annual period for which no satisfactory explanation has yet been adduced. Although the elaborate registers of Japan, which have enabled us to group earthquakes according to their respective origins and varying intensities, and to separate after-shocks from initial disturbances, have been subjected by Dr Knott to most careful analysis, with the object of discovering periodicities connected with the ebb and flow of the tides, the lunar day or lunar months, nothing of marked character has been found. Certainly there is slight evidence of a periodicity connected with the times of conjunction and opposition of the sun and moon, and a maximum frequency near the time of perigee, but the effect of lunar stresses is comparatively insignificant. Ordinary earthquakes, and especially after-shocks, show a diurnal period, but we cannot say that there are more earthquakes during the night than during the day.

Many experiments and investigations have been made to determine a possible relationship between earthquakes and electrical phenomena, but beyond drawing attention to the fact that luminous appearances may accompany Magnetic phenomena. the friction of moving masses of rock, and that a temporary current may be established in a line by the disturbance of an earth-plate, these inquiries have yielded but little of importance. The inquiries respecting a possible relationship between adjustments so frequently taking place within and beneath that region called the crust of the earth and magnetic phenomena are, however, of a more promising nature. We have seen that at or near the origin of earthquakes which for several hours disturb continents, and occasionally cause oceans to oscillate for longer periods, we sometimes have direct evidence of the bodily displacement of many cubic miles of material. When this material is volcanic it is almost invariably magnetic, and we perceive in its sudden rearrangement causes which should produce magnetic effects within an epifocal district. In Japan, where attention is being directed to phenomena of this description, not only have such effects been observed, but unusual magnetic disturbances have been noted prior to the occurrence of large earthquakes. These may, of course, be regarded as mere coincidences, but when we consider volcanic and seismic activities as evidences of physical and chemical changes, together with mechanical displacements of a magnetic magma, it is reasonable to suppose that they should have at least a local influence upon magnetic needles. Another form of disturbance to which magnetic needles are subjected is that which accompanies the passage of large earth-waves beneath certain observatories situated at great distances from earthquake origins. At Utrecht, Potsdam and Wilhelmshaven the magnetographs are frequently disturbed by seismic waves, whilst at many other European observatories such effects are absent or only barely appreciable. To explain these marked differences in the behaviour of magnetic needles at different stations we are at present only in a position to formulate hypotheses. They may be due to the fact that different needles have different periodic times of oscillation; it is possible that at one observatory the mechanical movements of the ground are much greater than at others; we may speculate on the existence of materials beneath and around various observatories which are different in their magnetic characters; and, lastly, we may picture a crust of varying thickness, which from time to time is caused to rise and fall upon a magnetic magma, the places nearest to this being the most disturbed.

A subject to which but little attention has been directed is the effect which displays of seismic and volcanic activities have had upon the human mind. The effects are distinctly dual and opposite in character. In countries like Effects on the human mind. England, where earthquakes are seldom experienced, the prevailing idea is that they are associated with all that is baneful. For certain earthquakes, which fortunately are less than 1% of those which are annually recorded, this is partially true. A disastrous shock may unnerve a whole community. Effects of this nature, however, differ in a marked manner with different nationalities. After the shock of 1891, when Japan lost 9960 of its inhabitants, amongst the wounded indications of mental excitement were shown in spinal and other trouble. Notwithstanding the lightheartedness of this particular nation, it is difficult to imagine that the long series of seismic effects chronicled in Japanese history, which culminated in 1896 in the loss of 29,000 lives by sea-waves, has been without some effect upon its mental and moral character. Several earthquakes are annually commemorated by special services at temples. In bygone times governments have recognized earthquakes as visitations of an angry deity, whom they have endeavoured to appease by repealing stringent laws and taxes. In other countries the sermons which have been preached to show that the tremblings of the world were visitations consequent on impiety, and the prayers which have been formulated to ward off disasters in the future, far exceed in number the earthquakes which gave rise to them. In 1755 many of the English clergy held the view that Lisbon was destroyed because its inhabitants were Catholics, whilst the survivors from that disaster attributed their misfortune to the fact that they had tolerated a few Protestant heretics in their midst. To avoid a recurrence of disaster certain of these were baptized by force. In the myths relating to underground monsters and personages that are said to be the cause of earthquakes we see the direct effects which exhibitions of seismic and volcanic activity have produced upon the imagination. The beliefs, or more properly, perhaps, the poetical fancies, thus engendered have exhibited themselves in various forms. Beneath Japan there is said to be a catfish, which in other countries is replaced by a mole, a hog, an elephant or other living creature, which when it is restless shakes the globe. The Kamchadales picture a subterranean deity called Tuil, who in Scandinavian mythology is represented by the evil genius Loki. We have only to think of the reference in the Decalogue forbidding the making of graven images of that which is in the earth beneath, to see in early Biblical history evidence of a subterranean mythology; and it seems probable that the same causes which led to the creation of Pluto, Vulcan and Poseidon gave rise to practices condemned by Moses.