Σm(ẋδx + ẏδy + z˙δz) = A11q˙1 + A12q˙2 + ...)δq1 + (A21q˙1 + A22q˙2 + ...)δq2 + ...,

(6)

where

Arr = Σm { ( ∂x) ²+ ( ∂y) ²+ ( ∂z) ²},
∂qr ∂qr ∂qr

(7)

Ars = Σm {∂x ∂x +∂y ∂y +∂z ∂z } = Asr.
∂qr ∂qs∂qr ∂qs∂qr ∂qs

If we form the expression for the kinetic energy Τ of the system, we find

2Τ = Σm(ẋ² + ẏ² + z˙²) = A11q˙1² + A22q˙2² ... 2A12q˙1q˙2 + ...

(8)

The coefficients A11, A22, ... A12, ... are by an obvious analogy called the coefficients of inertia of the system; they are in general functions of the co-ordinates q1, q2,.... The equation (6) may now be written