Ever since physical speculation began in the atomic theories of the Greeks, its main problem has been that of unravelling the nature of the underlying correlation which binds together the various natural agencies. But it is only in recent times that scientific investigation has definitely established that there is a quantitative relation of simple equivalence between them, whereby each is expressible in terms of heat or mechanical power; that there is a certain measurable quantity associated with each type of physical activity which is always numerically identical with a corresponding quantity belonging to the new type into which it is transformed, so that the energy, as it is called, is conserved in unaltered amount. The main obstacle in the way of an earlier recognition and development of this principle had been the doctrine of caloric, which was suggested by the principles and practice of calorimetry, and taught that heat is a substance that can be transferred from one body to another, but cannot be created or destroyed, though it may become latent. So long as this idea maintained itself, there was no possible compensation for the destruction of mechanical power by friction; it appeared that mechanical effect had there definitely been lost. The idea that heat is itself convertible into power, and is in fact energy of motion of the minute invisible parts of bodies, had been held by Newton and in a vaguer sense by Bacon, and indeed long before their time; but it dropped out of the ordinary creed of science in the following century. It held a place, like many other anticipations of subsequent discovery, in the system of Natural Philosophy of Thomas Young (1804); and the discrepancies attending current explanations on the caloric theory were insisted on, about the same time, by Count Rumford and Sir H. Davy. But it was not till the actual experiments of Joule verified the same exact equivalence between heat produced and mechanical energy destroyed, by whatever process that was accomplished, that the idea of caloric had to be definitely abandoned. Some time previously R. Mayer, physician, of Heilbronn, had founded a weighty theoretical argument on the production of mechanical power in the animal system from the food consumed; he had, moreover, even calculated the value of a unit of heat, in terms of its equivalent in power, from the data afforded by Regnault’s determinations of the specific heats of air at constant pressure and at constant volume, the former being the greater on Mayer’s hypothesis (of which his calculation in fact constituted the verification) solely on account of the power required for the work of expansion of the gas against the surrounding constant pressure. About the same time Helmholtz, in his early memoir on the Conservation of Energy, constructed a cumulative argument by tracing the ramifications of the principle of conservation of energy throughout the whole range of physical science.

Mechanical and Thermal Energy.—The amount of energy, defined in this sense by convertibility with mechanical work, which is contained in a material system, must be a function of its physical state and chemical constitution and of its temperature. The change in this amount, arising from a given transformation in the system, is usually measured by degrading the energy that leaves the system into heat; for it is always possible to do this, while the conversion of heat back again into other forms of energy is impossible without assistance, taking the form of compensating degradation elsewhere. We may adopt the provisional view which is the basis of abstract physics, that all these other forms of energy are in their essence mechanical, that is, arise from the motion or strain of material or ethereal media; then their distinction from heat will lie in the fact that these motions or strains are simply co-ordinated, so that they can be traced and controlled or manipulated in detail, while the thermal energy subsists in irregular motions of the molecules or smallest portions of matter, which we cannot trace on account of the bluntness of our sensual perceptions, but can only measure as regards total amount.

Historical: Abstract Dynamics.—Even in the case of a purely mechanical system, capable only of a finite number of definite types of disturbance, the principle of the conservation of energy is very far from giving a complete account of its motions; it forms only one among the equations that are required to determine their course. In its application to the kinetics of invariable systems, after the time of Newton, the principle was emphasized as fundamental by Leibnitz, was then improved and generalized by the Bernoullis and by Euler, and was ultimately expressed in its widest form by Lagrange. It is recorded by Helmholtz that it was largely his acquaintance in early years with the works of those mathematical physicists of the previous century, who had formulated and generalized the principle as a help towards the theoretical dynamics of complex systems of masses, that started him on the track of extending the principle throughout the whole range of natural phenomena. On the other hand, the ascertained validity of this extension to new types of phenomena, such as those of electrodynamics, now forms a main foundation of our belief in a mechanical basis for these sciences.

In the hands of Lagrange the mathematical expression for the manner in which the energy is connected with the geometrical constitution of the material system became a sufficient basis for a complete knowledge of its dynamical phenomena. So far as statics was concerned, this doctrine took its rise as far back as Galileo, who recognized in the simpler cases that the work expended in the steady driving of a frictionless mechanical system is equal to its output. The expression of this fact was generalized in a brief statement by Newton in the Principia, and more in detail by the Bernoullis, until, in the analytical guise of the so-called principle of “virtual velocities” or virtual work, it finally became the basis of Lagrange’s general formulation of dynamics. In its application to kinetics a purely physical principle, also indicated by Newton, but developed long after with masterly applications by d’Alembert, that the reactions of the infinitesimal parts of the system against the accelerations of their motions statically equilibrate the forces applied to the system as a whole, was required in order to form a sufficient basis, and one which Lagrange soon afterwards condensed into the single relation of Least Action. As a matter of history, however, the complete formulation of the subject of abstract dynamics actually arose (in 1758) from Lagrange’s precise demonstration of the principle of Least Action for a particle, and its immediate extension, on the basis of his new Calculus of Variations, to a system of connected particles such as might be taken as a representation of any material system; but here too the same physical as distinct from mechanical considerations come into play as in d’Alembert’s principle. (See [Dynamics]: Analytical.)

It is in the cases of systems whose state is changing so slowly that reactions arising from changing motions can be neglected, that the conditions are by far the simplest. In such systems, whether stationary or in a state of steady motion, the energy depends on the configuration alone, and its mathematical expression can be determined from measurement of the work required for a sufficient number of simple transformations; once it is thus found, all the statical relations of the system are implicitly determined along with it, and the results of all other transformations can be predicted. The general development of such relations is conveniently classed as a separate branch of physics under the name Energetics, first invented by W.J.M. Rankine; but the essential limitations of this method have not always been observed. As regards statical change, the complete specification of a mechanical system is involved in its geometrical configuration and the function expressing its mechanical energy in terms thereof. Systems which have statical energy-functions of the same analytical form behave in corresponding ways, and can serve as models or representations of one another.

Extension to Thermal and Chemical Systems.—This dominant position of the principle of energy, in ordinary statical problems, has in recent times been extended to transformations involving change of physical state or chemical constitution as well as change of geometrical configuration. In this wider field we cannot assert that mechanical (or available) energy is never lost, for it may be degraded into thermal energy; but we can use the principle that on the other hand it can never spontaneously increase. If this were not so, cyclic processes might theoretically be arranged which would continue to supply mechanical power so long as energy of any kind remained in the system; whereas the irregular and uncontrollable character of the molecular motions and strains which constitute thermal energy, in combination with the vast number of the molecules, must place an effectual bar on their unlimited co-ordination. To establish a doctrine of energetics that shall form a sufficient foundation for a theory of the trend of chemical and physical change, we have, therefore, to impart precision to this motion of available energy.

Carnot’s Principle: Entropy.—The whole subject is involved in the new principle contributed to theoretical physics by Sadi Carnot in 1824, in which the far-reaching modern conception of cyclic processes was first scientifically developed. It was shown by Carnot, on the basis of certain axioms, whose theoretical foundations were subsequently corrected and strengthened by Clausius and Lord Kelvin, that a reversible mechanical process, working in a cycle by means of thermal transfers, which takes heat, say H1, into the material system at a given temperature T1, and delivers the part of it not utilized, say H2, at a lower given temperature T2, is more efficient, considered as a working engine, than any other such process, operating between the same two temperatures but not reversible, could be. This relation of inequality involves a definite law of equality, that the mechanical efficiencies of all reversible cyclic processes are the same, whatever be the nature of their operation or the material substances involved in them; that in fact the efficiency is a function solely of the two temperatures at which the cyclically working system takes in and gives out heat. These considerations constitute a fundamental general principle to which all possible slow reversible processes, so far as they concern matter in bulk, must conform in all their stages; its application is almost coextensive with the scope of general physics, the special kinetic theories in which inertia is involved, being excepted. (See [Thermodynamics].) If the working system is an ideal gas-engine, in which a perfect gas (known from experience to be a possible state of matter) is passed through the cycle, and if temperature is measured from the absolute zero by the expansion of this gas, then simple direct calculation on the basis of the laws of ideal gases shows that H1/T1 = H2/T2; and as by the conservation of energy the work done is H1 − H2, it follows that the efficiency, measured as the ratio of the work done to the supply of heat, is 1 − T2/T1. If we change the sign of H1 and thus consider heat as positive when it is restored to the system as is H2, the fundamental equation becomes H1/T1 + H2/T2 = 0; and as any complex reversible working system may be considered as compounded in various ways of chains of elementary systems of this type, whose effects are additive, the general proposition follows, that in any reversible complete cyclic change which involves the taking in of heat by the system of which the amount is δH, when its temperature ranges between Tr and Tr + δT, the equation ΣδHr/Tr-0 holds good. Moreover, if the changes are not reversible, the proportion of the heat supply that is utilized for mechanical work will be smaller, so that more heat will be restored to the system, and ΣδHr/Tr or, as it may be expressed, ∫dH/T, must have a larger value, and must thus be positive. The first statement involves further, that for all reversible paths of change of the system from one state C to another state D, the value of ∫dH/T must be the same, because any one of these paths and any other one reversed would form a cycle; whereas for any irreversible path of change between the same states this integral must have a greater value (and so exceed the difference of entropies at the ends of the path). The definite quantity represented by this integral for a reversible path was introduced by Clausius in 1854 (also adumbrated by Kelvin’s investigations about the same time), and was named afterwards by him the increase of the entropy of the system in passing from the state C to the state D. This increase, being thus the same for the unlimited number of possible reversible paths involving independent variation of all its finite co-ordinates, along which the system can pass, can depend only on the terminal states. The entropy belonging to a given state is therefore a function of that state alone, irrespective of the manner in which it has been reached; and this is the justification of the assignment to it of a special name, connoting a property of the system depending on its actual condition and not on its previous history. Every reversible change in an isolated system thus maintains the entropy of that system unaltered; no possible spontaneous change can involve decrease of the entropy; while any defect of reversibility, arising from diffusion of matter or motion in the system, necessarily leads to increase of entropy. For a physical or chemical system only those changes are spontaneously possible which would lead to increase of the entropy; if the entropy is already a maximum for the given total energy, and so incapable of further continuous increase under the conditions imposed upon the system, there must be stable equilibrium.

This definite quantity belonging to a material system, its entropy φ, is thus concomitant with its energy E, which is also a definite function of its actual state by the law of conservation of energy; these, along with its temperature T, and the various co-ordinates expressing its geometrical configuration and its physical and chemical constitution, are the quantities with which the thermodynamics of the system deals. That branch of science develops the consequences involved in just two principles: (i.) that the energy of every isolated system is constant, and (ii.) that its entropy can never diminish; any complication that may be involved arises from complexity in the systems to which these two laws have to be applied.

The General Thermodynamic Equation.—When any physical or chemical system undergoes an infinitesimal change of state, we have δE = δH + δU, where δH is the energy that has been acquired as heat from sources extraneous to the system during the change, and δU is the energy that has been imparted by reversible agencies such as mechanical or electric work. It is, however, not usually possible to discriminate permanently between heat acquired and work imparted, for (unless for isothermal transformations) neither δH nor δU is the exact differential of a function of the constitution of the system and so independent of its previous history, although their sum δE is such; but we can utilize the fact that δH is equal to Tδφ where δφ is such, as has just been seen. Thus E and φ represent properties of the system which, along with temperature, pressure and other independent data specifying its constitution, must form the variables of an analytical exposition. We have, therefore, to substitute Tδφ for δH; also the change of internal energy is determined by the change of constitution, involving a differential relation of type

δU = −pδv + δW + μ1δm1 + μ2δm2 + ... + μnδmn,