a+ b+ c= 0
z xy

(1).

Multiply by z, x and y, and divide the sum by xyz; then

a+ b+ c= 0
y zx

(2).

From (1) and (2) by cross multiplication we obtain

1= 1= 1= 1(suppose)
y (b² − ac) z (c² − ab)x (a² − bc) λ

(3).

Substituting for x, y and z in x (x − a) = yz we obtain

1= 3abc − (a³ + b³ + c³);
λ (a² − bc) (b² − ac) (c² − ab)