Apparently there is here some gap in the line of descent of the horse, and it may be suggested that the evolution took place, not as commonly supposed, in North America, but in eastern central Asia, of which the palaeontology is practically unknown; some support is given to this theory by the fact that the earliest species with which we are acquainted occur in northern India.
![]() | |
| Fig. 3.—Successive stages of modification of the left fore-feet ofextinct forms of horse-like animals, showing gradual reduction ofthe outer and enlargement of the middle toe (III). | |
a, Hyracotherium (Eocene). b, Mesohippus (Oligocene). c, Anchitherium (Miocene). | d, Hipparion (Pliocene). e, Equus (Pleistocene). |
Be this as it may, the next North American representatives of the family constitute the genera Protohippus and Merychippus of the Miocene, in both of which the lateral digits are fully developed and terminate in small though perfect hoofs. In both the cheek-teeth have moderately tall crowns, and in the first named of the two those of the milk-series are nearly similar to their permanent successors. In Merychippus, on the other hand, the milk-molars have short crowns, without any cement in the hollows, thus resembling the permanent molars of the under-mentioned genus Anchitherium. From the well-known Hipparion, or Hippotherium, typically from the Lower Pliocene of Europe, but also occurring in the corresponding formation in North Africa, Persia, India and China, and represented in the Upper Miocene Loup Fork beds of the United States by species which it has been proposed to separate generically as Neohipparion, we reach small horses which are now generally regarded as a lateral offshoot from the Merychippus type. The cheek-teeth, which have crowns of moderate height, differ from those of all the foregoing in that the postero-internal pillar (the projection on the right-hand top corner of c in fig. 2) is isolated in place of being attached by a narrow neck to the adjacent crescent. The skull, which is relatively short, has a large depression in front of the orbit, commonly supposed to have contained a gland, but this may be doubtful. In the typical, and also in the North American forms these were complete, although small, lateral toes in both feet (fig. 3, d), but it is possible that in H. antilopinum of India the lateral toes had disappeared. If this be so, we have the development of a monodactyle foot in this genus independently of Equus.
The foregoing genera constitute the subfamily Equinae, or the Equidae as restricted by the older writers. In all the dentition is of the hypsodont type, with the hollows of the cheek-teeth filled by cement, the premolars molariform, and the first small and generally deciduous. The orbit is surrounded by a bony ring; the ulna and radius in the fore, and the tibia and fibula in the hind-limb are united, and the feet are of the types described above. Between this subfamily and the second subfamily, Hyracotheriinae, a partial connexion is formed by the North American Upper Miocene genera Desmatippus and Anchippus or Parahippus. The characteristics of the group will be gathered from the remarks on the leading genera; but it may be mentioned that the orbit is open behind, the cheek-teeth are short-crowned and without cement (fig. 1, a), the gap between the canine and the outermost incisor is short, the bones of the middle part of the leg are separate, and there are at least three toes to each foot.
The longest-known genus and the one containing the largest species is Anchitherium, typically from the Middle Miocene of Europe, but also represented by one species from the Upper Miocene of North America. The European A. aurelianense was of the size of an ordinary donkey. The cheek-teeth are of the type shown in a of figs. 1 and 2; the premolars, with the exception of the small first one, being molar-like; and the lateral toes (fig. 3, c) were to some extent functional. The summits of the incisors were infolded to a small extent. Nearly allied is the American Mesohippus, ranging from the Lower Miocene to the Lower Oligocene of the United States, of which the earliest species stood only about 18 in. at the shoulder. The incisors were scarcely, if at all, infolded, and there is a rudiment of the fifth metacarpal (fig. 3, b). By some writers all the species of Mesohippus are included in the genus Miohippus, but others consider that the two genera are distinct.
Mesohippus and Miohippus are connected with the earliest and most primitive mammal which it is possible to include in the family Equidae by means of Epihippus of the Uinta or Upper Eocene of North America, and Pachynolophus, or Orohippus, of the Middle and Lower Eocene of both halves of the northern hemisphere. The final stage, or rather the initial stage, in the series is presented by Hyracotherium (Protorohippus), a mammal no larger than a fox, common to the Lower Eocene of Europe and North America. The general characteristics of this progenitor of the horses are those given above as distinctive of the group. The cheek-teeth are, however, much simpler than those of Anchitherium; the transverse crests of the upper molars not being fully connected with the outer wall, while the premolars in the upper jaw are triangular, and thus unlike the molars. The incisors are small and the canines scarcely enlarged; the latter having a gap on each side in the lower, but only one on their hinder aspect in the upper jaw. The fore-feet have four complete toes (fig. 3, a), but there are only three hind-toes, with a rudiment of the fifth metatarsal. The vertebrae are simpler in structure than in Equus. From Hyracotherium, which is closely related to the Eocene representatives of the ancestral stocks of the other three branches of the Perissodactyla, the transition is easy to Phenacodus, the representative of the common ancestor of all the Ungulata.
See also H.F. Osborn, “New Oligocene Horses,” Bull. Amer. Mus. vol. xx. p. 167 (1904); J.W. Gidley, Proper Generic Names of Miocene Horses, p. 191; and the article [Palaeontology].
(R. L.*)
EQUILIBRIUM (from the Lat. aequus, equal, and libra, a balance), a condition of equal balance between opposite or counteracting forces. By the “sense of equilibrium” is meant the sense, or sensations, by which we have a feeling of security in standing, walking, and indeed in all the movements by which the body is carried through space. Such a feeling of security is necessary both for maintaining any posture, such as standing, or for performing any movement. If this feeling is absent or uncertain, or if there are contradictory sensations, then definite muscular movements are inefficiently or irregularly performed, and the body may stagger or fall. When we stand erect on a firm surface, like a floor, there is a feeling of resistance, due to nervous impulses reaching the brain from the soles of the feet and from the muscles of the limbs and trunk. In walking or running, these feelings of resistance seem to precede and guide the muscular movements necessary for the next step. If these are absent or perverted or deficient, as is the case in the disease known as locomotor ataxia, then, although there is no loss of the power of voluntary movement, the patient staggers in walking, especially if he is not allowed to look at his feet, or if he is blind-folded. He misses the guiding sensations that come from the limbs; and with a feeling that he is walking on a soft substance, offering little or no resistance, he staggers, and his muscular movements become irregular. Such a condition maybe artificially brought about by washing the soles of the feet with chloroform or ether. And it has been observed to exist partially after extensive destruction of the skin of the soles of the feet by burns or scalds. This shows that tactile impulses from the skin take a share in generating the guiding sensation. In the disease above mentioned, however, tactile impressions may be nearly normal, but the guiding sensation is weak and inefficient, owing to the absence of impulses from the muscles. The disease is known to depend on morbid changes in the posterior columns of the spinal cord, by which impulses are not freely transmitted upwards to the brain. These facts point to the existence of impulses coming from the muscles and tendons. It is now known that there exist peculiar spindles, in muscle, and rosettes or coils or loops of nerve fibres in close proximity to tendons. These are the end organs of the sense. The transmission of impulses gives rise to the muscular sense, and the guiding sensation which precedes co-ordinated muscular movements depends on these impulses. Thus from the limbs streams of nervous impulses pass to the sensorium from the skin and from muscles and tendons; these may or may not arouse consciousness, but they guide or evoke muscular movements of a co-ordinated character, more especially of the limbs.
